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Product Overview
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Simulink® Fixed Point™ enables the fixed-point capabilities of the Simulink®
product family, letting you use those products to design, simulate, and
implement fixed-point control and signal processing algorithms.

With Simulink Fixed Point, you specify fixed-point data attributes, including
word length and scaling for signals and parameters, in your model. You

can perform bit-true simulations to observe the effects of limited range

and precision on designs built with Simulink, Stateflow®, DSP System
Toolbox™, and other Simulink products. Automated fixed-point advisors
guide you through the steps of converting floating-point models to fixed point.
Additional tools analyze your model or use simulation results to recommend
data types and scaling.

Simulink Fixed Point supports C, HDL, and PLC code generation with
Simulink code-generation products.

You can use the Simulink Fixed Point software with Simulink products to
simulate effects commonly encountered in fixed-point systems for applications
such as control systems and time-domain filtering. The Simulink Fixed Point
software includes these major features:

¢ Integer, fractional, and generalized fixed-point data types

= Unsigned and two’s complement formats

= Word sizes in simulation from 1 to 128 bits



Product Overview

¢ Floating-point data types
= IEEE-style singles and doubles

= A nonstandard IEEE-style data type, where the fraction can range from
1 to 52 bits and the exponent can range from 1 to 11 bits

e Methods for overflow handling, scaling, and rounding of fixed-point data
types

® Tools that facilitate
= Collection of minimum and maximum simulation values
= Optimization of scaling parameters

= Display of input and output signals

In addition, you can generate C code and HDL code for execution on a
fixed-point embedded processor with the Simulink® Coder™ product. The
generated code uses only integer types and automatically includes all
operations, such as shifts, needed to account for differences in fixed-point
locations.

The Simulink Fixed Point software features listed above are all supported for
fixed-point Simulink blocks. Other products in the Simulink family with
fixed-point capabilities might support some or all of these features. To get
specific information about the fixed-point features supported by a particular
product, refer to the documentation for that product. For example,

® For information on fixed-point support in the DSP System Toolbox software,
refer to “Fixed-Point Design” in the DSP System Toolbox documentation.

® For information on fixed-point support in the Stateflow software, refer
to “Using Fixed-Point Data in Stateflow Charts” in the Stateflow
documentation.

1-3



1 Getting Started

What You Need to Get Started

In this section...

“Installation” on page 1-4

“Sharing Fixed-Point Models” on page 1-4

“Demos” on page 1-5

Installation
To determine if the Simulink Fixed Point software is installed on your system,
type

ver

at the MATLAB® command line. When you enter this command, the MATLAB
Command Window displays information about the version of MATLAB
software you are running, including a list of installed add-on products and
their version numbers. Check the list to see if the Simulink Fixed Point
software appears.

For information about installing this product, refer to the installation
documentation.

If you experience installation difficulties and have Web access, look for
the installation and license information at the MathWorks® Web site
(http://www.mathworks.com/support).

Sharing Fixed-Point Models

You can edit a model containing fixed-point blocks without the Simulink
Fixed Point software. However, you must have a Simulink Fixed Point
software license to

e Update a Simulink diagram (Ctrl+D) containing fixed-point data types
¢ Run a model containing fixed-point data types

® Generate code from a model containing fixed-point data types

¢ Log the minimum and maximum values produced by a simulation
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® Automatically scale the output of a model using the autoscaling tool

If you do not have the Simulink Fixed Point software, you can work with a
model containing Simulink blocks with fixed-point settings as follows:

1 In the Model Hierarchy pane, select the root model.

2 From the Simulink model Tools menu, select Fixed-Point > Fixed-Point
Tool.

The Fixed-Point Tool appears.
¢ Set the Fixed-point instrumentation mode parameter to Force Off.
® Set the Data type override parameter to Double or Single.

® Set the Data type override applies to parameter to ALl numeric
types.

3 If you use fi objects or embedded numeric data types in your model,
set the fipref DataTypeOverride property to TrueDoubles and the
DataTypeOverride property to A1l numeric types

At the MATLAB command line, enter:

p = fipref('DataTypeOverride', 'TrueDoubles’,
‘DataTypeOverrideAppliesTo', 'AllNumericTypes');

Note If you use fi objects or embedded numeric data types in your model or
workspace, you might introduce fixed-point data types into your model. You
can set fipref to prevent the checkout of a Fixed-Point Toolbox™ license. For
more information, see “Licensing” in the Fixed-Point Toolbox documentation.

Demos

To help you learn how to use the Simulink Fixed Point software, a collection
of demos is provided. You can explore specific features of the product by
changing the parameters of Simulink blocks with fixed-point support and
observing the effects of those changes.

The demos are divided into the following groups:

1-5
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Application Examples

Feature Demonstrations

Filters

Tools and Utilities

Custom S-Function Examples
All demos are located in the fxpdemos directory.

To view the complete list of demos, see Simulink Fixed Point Demos.



Physical Quantities and Measurement Scales

Physical Quantities and Measurement Scales

In this section...

“Introduction” on page 1-7
“Selecting a Measurement Scale” on page 1-8

“Example: Selecting a Measurement Scale” on page 1-10

Introduction

The decision to use fixed-point hardware is simply a choice to represent
numbers in a particular form. This representation often offers advantages
in terms of the power consumption, size, memory usage, speed, and cost of
the final product.

A measurement of a physical quantity can take many numerical forms. For
example, the boiling point of water is 100 degrees Celsius, 212 degrees
Fahrenheit, 373 kelvin, or 671.4 degrees Rankine. No matter what number is
given, the physical quantity is exactly the same. The numbers are different
because four different scales are used.

Well known standard scales like Celsius are very convenient for the exchange
of information. However, there are situations where it makes sense to create
and use unique nonstandard scales. These situations usually involve making
the most of a limited resource.

For example, nonstandard scales allow map makers to get the maximum
detail on a fixed size sheet of paper. A typical road atlas of the USA will show
each state on a two-page display. The scale of inches to miles will be unique
for most states. By using a large ratio of miles to inches, all of Texas can fit
on two pages. Using the same scale for Rhode Island would make poor use of
the page. Using a much smaller ratio of miles to inches would allow Rhode
Island to be shown with the maximum possible detail.

Fitting measurements of a variable inside an embedded processor is similar to
fitting a state map on a piece of paper. The map scale should allow all the
boundaries of the state to fit on the page. Similarly, the binary scale for a
measurement should allow the maximum and minimum possible values to
fit. The map scale should also make the most of the paper in order to get
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maximum detail. Similarly, the binary scale for a measurement should make
the most of the processor in order to get maximum precision.

Use of standard scales for measurements has definite compatibility
advantages. However, there are times when it is worthwhile to break
convention and use a unique nonstandard scale. There are also occasions
when a mix of uniqueness and compatibility makes sense. See the sections
that follow for more information.

Selecting a Measurement Scale

Suppose that you want to make measurements of the temperature of liquid
water, and that you want to represent these measurements using 8-bit
unsigned integers. Fortunately, the temperature range of liquid water 1s
limited. No matter what scale you use, liquid water can only go from the
freezing point to the boiling point. Therefore, this is the range of temperatures
that you must capture using just the 256 possible 8-bit values: 0,1,2,...,255.

One approach to representing the temperatures is to use a standard scale. For
example, the units for the integers could be Celsius. Hence, the integers 0 and
100 represent water at the freezing point and at the boiling point, respectively.
On the upside, this scale gives a trivial conversion from the integers to degrees
Celsius. On the downside, the numbers 101 to 255 are unused. By using this
standard scale, more than 60% of the number range has been wasted.

A second approach is to use a nonstandard scale. In this scale, the integers

0 and 255 represent water at the freezing point and at the boiling point,
respectively. On the upside, this scale gives maximum precision since there
are 254 values between freezing and boiling instead of just 99. On the
downside, the units are roughly 0.3921568 degree Celsius per bit so the
conversion to Celsius requires division by 2.55, which is a relatively expensive
operation on most fixed-point processors.

A third approach is to use a “semistandard” scale. For example, the integers
0 and 200 could represent water at the freezing point and at the boiling
point, respectively. The units for this scale are 0.5 degrees Celsius per bit.
On the downside, this scale doesn’t use the numbers from 201 to 255, which
represents a waste of more than 21%. On the upside, this scale permits
relatively easy conversion to a standard scale. The conversion to Celsius
involves division by 2, which is a very easy shift operation on most processors.
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Measurement Scales: Beyond Multiplication

One of the key operations in converting from one scale to another is
multiplication. The preceding case study gave three examples of conversions
from a quantized integer value @ to a real-world Celsius value V that involved
only multiplication:

[ 0
MQI Conversion 1
100 bits
O
V= 100°C —————@ Conversion 2
255 bits
100°C

————@3 Conversion 3

200 bits

Graphically, the conversion is a line with slope S, which must pass through
the origin. A line through the origin is called a purely linear conversion.
Restricting yourself to a purely linear conversion can be very wasteful and it
is often better to use the general equation of a line:

V=8Q + B.

By adding a bias term B, you can obtain greater precision when quantizing
to a limited number of bits.

The general equation of a line gives a very useful conversion to a quantized
scale. However, like all quantization methods, the precision is limited and
errors can be introduced by the conversion. The general equation of a line
with quantization error is given by

V =SQ+ B+ Error.

If the quantized value @ is rounded to the nearest representable number, then

—E < Error < E
2 2

1-9



1 Getting Started

1-10

That is, the amount of quantization error is determined by both the number of
bits and by the scale. This scenario represents the best-case error. For other
rounding schemes, the error can be twice as large.

Example: Selecting a Measurement Scale

On typical electronically controlled internal combustion engines, the flow

of fuel is regulated to obtain the desired ratio of air to fuel in the cylinders
just prior to combustion. Therefore, knowledge of the current air flow rate
1s required. Some manufacturers use sensors that directly measure air flow,
while other manufacturers calculate air flow from measurements of related
signals. The relationship of these variables is derived from the ideal gas
equation. The ideal gas equation involves division by air temperature. For
proper results, an absolute temperature scale such as kelvin or Rankine
must be used in the equation. However, quantization directly to an absolute
temperature scale would cause needlessly large quantization errors.

The temperature of the air flowing into the engine has a limited range. On a
typical engine, the radiator is designed to keep the block below the boiling
point of the cooling fluid. Assume a maximum of 225°F (380 K). As the

air flows through the intake manifold, it can be heated to this maximum
temperature. For a cold start in an extreme climate, the temperature can be
as low as -60°F (222 K). Therefore, using the absolute kelvin scale, the range
of interest is 222 K to 380 K.

The air temperature needs to be quantized for processing by the embedded
control system. Assuming an unrealistic quantization to 3-bit unsigned
numbers: 0,1,2,...,7, the purely linear conversion with maximum precision is

380K
7.5 bit

Q.

The quantized conversion and range of interest are shown in the following
figure.
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Visualization of Quantized Conversion

B T ! I

Quantized Value, Q (50.6667 K/bit) with Bias =0 K

V=222 K

V=38 K

0 50 100

Notice that there are 7.5 possible quantization values. This is because only
half of the first bit corresponds to temperatures (real-world values) greater

than zero.

150 200 250
Real World Value, V( K)

300

The quantization error is —25.33 K/bit < Error < 25.33 K/bit.

350

400
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The range of interest of the quantized conversion and the absolute value of
the quantized error are shown in the following figure.

Visualization of Quantized Conversion
400 - 1 ) T ) T Ll )

[#3)
%]
(=]

Quantized Value, Q
h &
(%] (=)
(] [ ]

200k =" 1 1 1 1 1 I 1 |
240 260 280 300 320 340 360 380
Real World Value, V( K)
é" ADF T T T T T T T ]
= 30 .
:
Pg 20 -
.-E 10 - -
g
6’ D 1 1 1 1 1 Il 1
240 260 280 300 320 340 360 380
Real World Value, V( K)

As an alternative to the purely linear conversion, consider the general linear
conversion with maximum precision:

V:(380 K-222K

2 )Q+222 K+0.5[—380 K -222 K)

8
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The quantized conversion and range of interest are shown in the following

figure.

Visualization of Quantized Conversion

231875 K

Quantized Value, Q (19.75 K/bit) with Bias

V=222 K

The quantization error is -9.875 K/bit < Error < 9.875 K/bit, which is
approximately 2.5 times smaller than the error associated with the purely

linear conversion.

50

100

150

200
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Real World Value, V( K)
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The range of interest of the quantized conversion and the absolute value of
the quantized error are shown in the following figure.

Visualization of Quantized Conversion
400 - 1 I I I I I I -
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Clearly, the general linear scale gives much better precision than the purely
linear scale over the range of interest.
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Why Use Fixed-Point Hardware?

Digital hardware is becoming the primary means by which control systems
and signal processing filters are implemented. Digital hardware can be
classified as either off-the-shelf hardware (for example, microcontrollers,
microprocessors, general-purpose processors, and digital signal processors)
or custom hardware. Within these two types of hardware, there are many
architecture designs. These designs range from systems with a single
instruction, single data stream processing unit to systems with multiple
instruction, multiple data stream processing units.

Within digital hardware, numbers are represented as either fixed-point or
floating-point data types. For both these data types, word sizes are fixed at

a set number of bits. However, the dynamic range of fixed-point values is
much less than floating-point values with equivalent word sizes. Therefore,
in order to avoid overflow or unreasonable quantization errors, fixed-point
values must be scaled. Since floating-point processors can greatly simplify the
real-time implementation of a control law or digital filter, and floating-point
numbers can effectively approximate real-world numbers, then why use a
microcontroller or processor with fixed-point hardware support?

¢ Size and Power Consumption — The logic circuits of fixed-point
hardware are much less complicated than those of floating-point hardware.
This means that the fixed-point chip size is smaller with less power
consumption when compared with floating-point hardware. For example,
consider a portable telephone where one of the product design goals is to
make it as portable (small and light) as possible. If one of today’s high-end
floating-point, general-purpose processors is used, a large heat sink and
battery would also be needed, resulting in a costly, large, and heavy
portable phone.

¢ Memory Usage and Speed — In general fixed-point calculations require
less memory and less processor time to perform.

® Cost — Fixed-point hardware is more cost effective where price/cost is
an important consideration. When digital hardware is used in a product,
especially mass-produced products, fixed-point hardware costs much less
than floating-point hardware and can result in significant savings.

After making the decision to use fixed-point hardware, the next step is to
choose a method for implementing the dynamic system (for example, control
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system or digital filter). Floating-point software emulation libraries are
generally ruled out because of timing or memory size constraints. Therefore,
you are left with fixed-point math where binary integer values are scaled.
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Why Use the Simulink Fixed Point Software?

The Simulink Fixed Point software allows you to efficiently design control
systems and digital filters that you will implement using fixed-point
arithmetic. With the Simulink Fixed Point software, you can construct
Simulink and Stateflow models that contain detailed fixed-point information
about your systems. You can then perform bit-true simulations with the
models to observe the effects of limited range and precision on your designs.

You can configure the Fixed-Point Tool to automatically log the overflows,
saturations, and signal extremes of your simulations. You can also use it to
automate scaling decisions and to compare your fixed-point implementations
against 1dealized, floating-point benchmarks.

You can use the Simulink Fixed Point software with the Simulink

Coder product to automatically generate efficient, integer-only C code
representations of your designs. You can use this C code in a production
target or for rapid prototyping. You can also use the Simulink Fixed Point
software with the Embedded Coder™ product to generate real-time C code
for use on an integer production, embedded target.
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The Development Cycle

The Simulink Fixed Point software provides tools that aid in the development
and testing of fixed-point dynamic systems. You directly design dynamic
system models in the Simulink software that are ready for implementation on
fixed-point hardware. The development cycle is illustrated below.

( Start 1

Model plant or
signal source

...........

Model fixed-point
controller or filter

Design
requirements
met?

Usze the model ag a
specification for
creating production
code
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The Development Cycle

Using the MATLAB, Simulink, and Simulink Fixed Point software, you follow
these steps of the development cycle:

1 Model the system (plant or signal source) within the Simulink software
using double-precision numbers. Typically, the model will contain
nonlinear elements.

2 Design and simulate a fixed-point dynamic system (for example, a control
system or digital filter) with fixed-point Simulink blocks that meets the
design, performance, and other constraints.

3 Analyze the results and go back to step 1 if needed.

When you have met the design requirements, you can use the model as a
specification for creating production code using the Simulink Coder product.

The above steps interact strongly. In steps 1 and 2, there is a significant
amount of freedom to select different solutions. Generally, you fine-tune the
model based upon feedback from the results of the current implementation
(step 3). There is no specific modeling approach. For example, you may obtain
models from first principles such as equations of motion, or from a frequency
response such as a sine sweep. There are many controllers that meet the
same frequency-domain or time-domain specifications. Additionally, for each
controller there are an infinite number of realizations.

The Simulink Fixed Point software helps expedite the design cycle by allowing

you to simulate the effects of various fixed-point controller and digital filter
structures.
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Data Type Support

1-20

The Simulink Fixed Point software supports the following integer and
fixed-point data types for simulation and code generation:

¢ Unsigned data types from 1 to 128 bits

¢ Signed data types from 2 to 128 bits

® Boolean, double, and single

e Scaled doubles

The software supports all scaling choices including pure integer, binary point,

and slope bias. For slope bias scaling, it does not support complex fixed-point
types that have non-zero bias or non-trivial slope.

The save data type support extends to signals, parameters, and states.
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Simulink Fixed Point Software Features

In this section...

“Configuring Blocks with Fixed-Point Output” on page 1-21
“Configuring Blocks with Fixed-Point Parameters” on page 1-31

“Passing Fixed-Point Data Between Simulink Models and the MATLAB
Software” on page 1-34

“Automatic Scaling Tools” on page 1-38

“Code Generation Capabilities” on page 1-40

Configuring Blocks with Fixed-Point Output

You can create a fixed-point model by configuring Simulink blocks to output
fixed-point signals. Simulink blocks that support fixed-point output provide
parameters that allow you to specify whether a block should output fixed-point
signals and, if so, the size, scaling, and other attributes of the fixed-point
output. These parameters typically appear on the Signal Attributes pane
of the block’s parameter dialog box.
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x

Gain

|

Element-wise gain (y = K.*u) or matrix gain {y = K*u or y = u™).

Cutput minirum: Output maximurm:

Main Signal Attributes | Parameter Attributes I

ol I

Output data type: I Inherit: Inherit via internal rule LI = |

[ Lock output data type setting against changes by the fixed-point tools
Integer rounding mode: IFIn:u:nr ;l

[ saturate on integer overflow

J- Ok Cancel Help | Apply

The following sections explain how to use these parameters to configure a
block for fixed-point output.

“Specifying the Output Data Type and Scaling” on page 1-22

“Specifying Fixed-Point Data Types with the Data Type Assistant” on page
1-25

“Rounding” on page 1-28

“Overflow Handling” on page 1-29

“Locking the Output Data Type Setting” on page 1-29
“Real-World Values Versus Stored Integer Values” on page 1-29

Specifying the Output Data Type and Scaling

Many Simulink blocks allow you to specify an output data type and scaling
using a parameter that appears on the block dialog box. This parameter
(typically named Output data type) provides a pull-down menu that lists the
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data types a particular block supports. In general, you can specify the output

data type as a rule that inherits a data type, a built-in data type, an expression
that evaluates to a data type, or a Simulink data type object. See “Specifying

Block Output Data Types” in Simulink User’s Guide for more information.

The Simulink Fixed Point software enables you to configure Simulink blocks
with:

¢ Fixed-point data types

Fixed-point data types are characterized by their word size in bits and by
their binary point—the means by which fixed-point values are scaled. See
“Fixed-Point Numbers” on page 2-3 for more information.

¢ Floating-point data types

Floating-point data types are characterized by their sign bit, fraction
(mantissa) field, and exponent field. See “Floating-Point Numbers” on page
2-23 for more information.

To configure blocks with Simulink Fixed Point data types, specify the data
type parameter on a block dialog box as an expression that evaluates to a
data type. Alternatively, you can use an assistant that simplifies the task of
entering data type expressions (see “Specifying Fixed-Point Data Types with
the Data Type Assistant” on page 1-25). The sections that follow describe
varieties of fixed-point and floating-point data types, and the corresponding
functions that you use to specify them.

Integers. You can specify unsigned and signed integers with the uint and
sint functions, respectively.

For example, to configure a 16-bit unsigned integer via the block dialog box,
specify the Output data type parameter as uint(16). To configure a 16-bit
signed integer, specify the Output data type parameter as sint(16).

For integer data types, the default binary point is assumed to lie to the right
of all bits.

Fractional Numbers. You can specify unsigned and signed fractional
numbers with the ufrac and sfrac functions, respectively.
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For example, to configure the output as a 16-bit unsigned fractional number
via the block dialog box, specify the Output data type parameter to be
ufrac(16). To configure a 16-bit signed fractional number, specify Output
data type to be sfrac(16).

Fractional numbers are distinguished from integers by their default scaling.
Whereas signed and unsigned integer data types have a default binary point
to the right of all bits, unsigned fractional data types have a default binary
point to the left of all bits, while signed fractional data types have a default
binary point to the right of the sign bit.

Both unsigned and signed fractional data types support guard bits, which
act to guard against overflow. For example, sfrac(16,4) specifies a 16-bit
signed fractional number with 4 guard bits. The guard bits lie to the left
of the default binary point.

Generalized Fixed-Point Numbers. You can specify unsigned and
signed generalized fixed-point numbers with the ufix and sfix functions,
respectively.

For example, to configure the output as a 16-bit unsigned generalized
fixed-point number via the block dialog box, specify the Output data
type parameter to be ufix(16). To configure a 16-bit signed generalized
fixed-point number, specify Output data type to be sfix(16).

Generalized fixed-point numbers are distinguished from integers and
fractionals by the absence of a default scaling. For these data types, a block
typically inherits its scaling from another block.

Note Alternatively, you can use the fixdt function to create integer,
fractional, and generalized fixed-point objects. The fixdt function also allows
you to specify scaling for fixed-point data types.

Floating-Point Numbers. The Simulink Fixed Point software supports
single-precision and double-precision floating-point numbers as defined by
the IEEE® Standard 754-1985 for Binary Floating-Point Arithmetic. You can
specify floating-point numbers with the Simulink float function.
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For example, to configure the output as a single-precision floating-point
number via the block dialog box, specify the Output data type parameter
as float('single'). To configure a double-precision floating-point number,
specify Output data type as float('double').

Specifying Fixed-Point Data Types with the Data Type Assistant

The Data Type Assistant is an interactive graphical tool that simplifies

the task of specifying data types for Simulink blocks and data objects. The
assistant appears on block and object dialog boxes, adjacent to parameters
that provide data type control, such as the Output data type parameter. For
more information about accessing and interacting with the assistant, see
“Using the Data Type Assistant” in Simulink User’s Guide.

You can use the Data Type Assistant to specify a fixed-point data type.
When you select Fixed point in the Mode field, the assistant displays fields
for describing additional attributes of a fixed-point data type, as shown in
this example:
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E Source Block Parameters: Constant

Constant

X

Qutput the constant spedfied by the 'Constant value' parameter, If 'Constant value' is a vector and 'Interpret
vector parameters as 1-0' iz on, treat the constant value as a 1-D array. Otherwise, output a matrix with the
same dimensions as the constant value.

Main Signal Attributes

Output minirmum: Output maximurm:

|0 [

Output data type: | fixdt(1,15,2°0,0) | < |

—Data Type Assistant

Mode: IFixeu:I point vI Signedness: ISignEd vl Word length: |16

Scaling: |5|l:l|:lE and bias vl Slope: IZ"D

Bias: I a

Data type override: IInherit vl Calculate Best-Predsion Scaling

Fixed-point details

[~ Lock output data type setting against changes by the fixed-point tools

J- Ok I Cancel Help

You can set the following fixed-point attributes:

Signedness. Select whether you want the fixed-point data to be Signed
or Unsigned. Signed data can represent positive and negative quantities.
Unsigned data represents positive values only.

Word length. Specify the size (in bits) of the word that will hold the
quantized integer. Large word sizes represent large quantities with greater
precision than small word sizes. Fixed-point word sizes up to 128 bits are
supported for simulation.
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Scaling. Specify the method for scaling your fixed-point data to avoid
overflow conditions and minimize quantization errors. You can select the
following scaling modes:

Scaling Description
Mode
Binary If you select this mode, the assistant displays the Fraction length field,
point specifying the binary point location.
Binary points can be positive or negative integers. A positive integer moves the
binary point left of the rightmost bit by that amount. For example, an entry of 2
sets the binary point in front of the second bit from the right. A negative integer
moves the binary point further right of the rightmost bit by that amount, as
in this example:
| 16 bit binary word |
binary point [fraction kngth = E]J
binary point [fraction kngth = -2)
See “Binary-Point-Only Scaling” on page 2-6 for more information.
Slope and If you select this mode, the assistant displays fields for entering the Slope
bias and Bias.
¢ Slope can be any positive real number.
¢ Bias can be any real number.
See “Slope and Bias Scaling” on page 2-6 for more information.
Best If you select this mode, the block scales a constant vector or matrix such that
precision the precision of its elements is maximized. This mode is available only for

particular blocks.

See “Constant Scaling for Best Precision” on page 2-12 for more information.
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Calculate Best-Precision Scaling. The Simulink Fixed Point software
can automatically calculate “best-precision” values for both Binary point
and Slope and bias scaling, based on the values that you specify for other
parameters on the dialog box. To calculate best-precision-scaling values
automatically, enter values for the block’s Output minimum and Output
maximum parameters. Afterward, click the Calculate Best-Precision
Scaling button in the assistant.

Rounding

You specify how fixed-point numbers are rounded with the Integer rounding
mode parameter. The following rounding modes are supported:

® Ceiling — This mode rounds toward positive infinity and is equivalent to
the MATLAB ceil function.

® Convergent — This mode rounds toward the nearest representable
number, with ties rounding to the nearest even integer. Convergent
rounding is equivalent to the Fixed-Point Toolbox convergent function.

® Floor — This mode rounds toward negative infinity and is equivalent to
the MATLAB floor function.

® Nearest — This mode rounds toward the nearest representable number,
with the exact midpoint rounded toward positive infinity. Rounding toward
nearest is equivalent to the Fixed-Point Toolbox nearest function.

® Round — This mode rounds to the nearest representable number, with ties
for positive numbers rounding in the direction of positive infinity and ties
for negative numbers rounding in the direction of negative infinity. This
mode is equivalent to the Fixed-Point Toolbox round function.

® Simplest — This mode automatically chooses between round toward floor
and round toward zero to produce generated code that is as efficient as
possible.

® Zero — This mode rounds toward zero and is equivalent to the MATLAB
fix function.

For more information about each of these rounding modes, see “Rounding”
on page 3-3.
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Overflow Handling

You control how overflow conditions are handled for fixed-point operations
with the Saturate on integer overflow check box.

If this box is selected, overflows saturate to either the maximum or minimum
value represented by the data type. For example, an overflow associated with
a signed 8-bit integer can saturate to -128 or 127.

If this box is not selected, overflows wrap to the appropriate value that is
representable by the data type. For example, the number 130 does not fit in a
signed 8-bit integer, and would wrap to -126.

Locking the Output Data Type Setting

If the output data type is a generalized fixed-point number, you have the
option of locking its output data type setting by selecting the Lock output
data type setting against changes by the fixed-point tools check box.

When locked, the Fixed-Point Tool and automatic scaling script autofixexp
do not change the output data type setting. For more information, see
“Automatic Scaling Tools” on page 1-38. Otherwise, the Fixed-Point Tool and
autofixexp script are free to adjust the output data type setting.

Real-World Values Versus Stored Integer Values

You can configure Data Type Conversion blocks to treat signals as real-world
values or as stored integers with the Input and output to have equal
parameter.
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=] Function Block Parameters: Data Type Conversion x|

—Data Type Conversion

Convert the input to the data type and scaling of the output.

The conversion has two possible goals. One goal is to have the Real Waorld Values of the
input and the output be equal. The other goal is to have the Stored Integer Values of the
input and the output be equal. Overflows and guantization errors can prevent the goal
from being fully achieved.

—Parameters

QOutput minimurm: Output maximum:

[ [0
Output data type: I Inherit: Inherit via back propagation ;I == |

[T Lodk output data type setting against changes by the fixed-point tools

Input and output to have equal: IReal World Value (RWWY) ;I

Integer rounding mode: IFI-:u:ur ;I

[ saturate on integer overflow
Sample time (-1 for inherited):

-1

S)‘l oK Cancel Help Apply

The possible values are Real World Value (RWV) and Stored Integer
(SI).

In terms of the variables defined in “Scaling” on page 2-5, the real-world
value is given by V and the stored integer value is given by @. You may want
to treat numbers as stored integer values if you are modeling hardware that
produces integers as output.
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Configuring Blocks with Fixed-Point Parameters

Certain Simulink blocks allow you to specify fixed-point numbers as the
values of parameters used to compute the block’s output, e.g., the Gain
parameter of a Gain block.

Note S-functions and the Stateflow Chart block do not support fixed-point
parameters.

You can specify a fixed-point parameter value either directly by setting the
value of the parameter to an expression that evaluates to a fi object, or
indirectly by setting the value of the parameter to an expression that refers to
a fixed-point Simulink.Parameter object.

® “Specifying Fixed-Point Values Directly” on page 1-31
® “Specifying Fixed-Point Values Via Parameter Objects” on page 1-32

Note Simulating or performing data type override on a model with fi objects
requires a Fixed-Point Toolbox software license. See “Sharing Fixed-Point
Models” on page 1-4 for more information.

Specifying Fixed-Point Values Directly

You can specify fixed-point values for block parameters using fi objects (see
“Working with fi Objects” in the Fixed-Point Toolbox User’s Guide for more
information). In the block dialog’s parameter field, simply enter the name of a
fi object or an expression that includes the fi constructor function.

For example, entering the expression
fi(3.3,1,8,3)
as the Constant value parameter for the Constant block specifies a signed

fixed-point value of 3.3, with a word length of 8 bits and a fraction length
of 3 bits.
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Specifying Fixed-Point Values Via Parameter Obijects

You can specify fixed-point parameter objects for block parameters using
instances of the Simulink.Parameter class. To create a fixed-point parameter
object, either specify a fi object as the parameter object’s Value property, or
specify the relevant fixed-point data type for the parameter object’s DataType
property.

For example, suppose you want to create a fixed-point constant in your model.

You could do this using a fixed-point parameter object and a Constant block
as follows:

1 Enter the following command at the MATLAB prompt to create an instance
of the Simulink.Parameter class:

my_fixpt_param = Simulink.Parameter
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2 Specify either the name of a fi object or an expression that includes the fi
constructor function as the parameter object’s Value property:

my_fixpt_param.vValue = fi(3.3,true,8,3)

Alternatively, you can set the parameter object’s Value and DataType
properties separately. In this case, specify the relevant fixed-point data
type using a Simulink.AliasType object, a Simulink.NumericType object,
or a fixdt expression. For example, the following commands independently
set the parameter object’s value and data type, using a fixdt expression as
the DataType string:

my_fixpt_param.Value = 3.3;
my_fixpt_param.DataType = 'fixdt(true,8,2"-3,0)"

3 Specify the parameter object as the value of a block’s parameter. For
example, my fixpt_param specifies the Constant value parameter for the
Constant block in the following model:
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Consequently, the Constant block outputs a signed fixed-point value of 3.3,
with a word length of 8 bits and a fraction length of 3 bits.

Passing Fixed-Point Data Between Simulink Models
and the MATLAB Software

You can read fixed-point data from the MATLAB software into your Simulink
models, and there are a number of ways in which you can log fixed-point
information from your models and simulations to the workspace.

Reading Fixed-Point Data from the Workspace

You can read fixed-point data from the MATLAB workspace into a Simulink
model via the From Workspace block. To do so, the data must be in structure
format with a Fixed-Point Toolbox fi object in the values field. In array
format, the From Workspace block only accepts real, double-precision data.
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To read in fi data, the Interpolate data parameter of the From Workspace
block must not be selected, and the Form output after final data value by

parameter must be set to anything other than Extrapolation.

Writing Fixed-Point Data to the Workspace

You can write fixed-point output from a model to the MATLAB workspace via
the To Workspace block in either array or structure format. Fixed-point data
written by a To Workspace block to the workspace in structure format can be
read back into a Simulink model in structure format by a From Workspace

block.

Note To write fixed-point data to the workspace as a fi object, select the
Log fixed-point data as a fi object check box on the To Workspace block
dialog. Otherwise, fixed-point data is converted to double and written to the

workspace as double.

For example, you can use the following code to create a structure in the
MATLAB workspace with a fi object in the values field. You can then use

the From Workspace block to bring the data into a Simulink model.

a

fi([sin(0:10)' sin(10:-1:0)'])

OO0 O0OO0OO0OO0ODO0OO0OO0OOo

.8415
.9093
1411
.7568
.9589
.2794
.6570
.9893
4121
.5440

.5440
4121
.9893
.6570
.2794
.9589
.7568
L1411
.9093
.8415

0

OO0 O0OO0OO0OO0ODO0OO0OO0oOOo

DataTypeMode: Fixed-point:

binary point scaling
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Signed: true
WordLength: 16
FractionLength: 15

RoundMode: nearest
OverflowMode: saturate
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true

s.signals.values = a

signals: [1x1 struct]

s.signals.dimensions = 2

signals: [1x1 struct]

s.time = [0:10]'

signals: [1x1 struct]
time: [11x1 double]

The From Workspace block in the following model has the fi structure s in
the Data parameter. In the model, the following parameters in the Solver
pane of the Configuration Parameters dialog box have the indicated settings:
e Start time — 0.0

® Stop time — 10.0

* Type — Fixed-step

e Solver — Discrete (no continuous states)
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¢ Fixed-step size (fundamental sample time) — 1.0

Simulation Format Tools Help

File Edit View

=10l %]

D@ H&| &R 4= » ufoo [Nomal

=l

Ready

simout

Gain To Workspaos

[100% | [T=0.00 [FixedstepDiscrete

The To Workspace block writes the result of the simulation to the MATLAB
workspace as a fi structure.

simout.signals.values

ans =

13.4634
14.5488
2.2578
-12.1089
-15.3428
-4.4707
10.5117

. 7041
.5938
15.
10.
-4,
-15.
-12.
.2578

8296
5117
4707
3428
1089
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15.8296 14.5488
6.5938 13.4634
-8.7041 0

Logging Fixed-Point Signals

When fixed-point signals are logged to the MATLAB workspace via signal
logging, they are always logged as Fixed-Point Toolbox fi objects. To enable
signal logging for a signal, select the Log signal data option in the signal’s
Signal Properties dialog box. For more information, refer to “Signal Logging”
in Simulink User’s Guide.

When you log signals from a referenced model or Stateflow chart in your
model, the word lengths of fi objects may be larger than you expect. The word
lengths of fixed-point signals in referenced models and Stateflow charts are
logged as the next larger data storage container size.

Accessing Fixed-Point Block Data During Simulation

Simulink provides an application programming interface (API) that enables
programmatic access to block data, such as block inputs and outputs,
parameters, states, and work vectors, while a simulation is running. You can
use this interface to develop MATLAB programs capable of accessing block
data while a simulation is running or to access the data from the MATLAB
command line. Fixed-point signal information is returned to you via this API
as fi objects. For more information about the API, refer to “Accessing Block
Data During Simulation” in Simulink User’s Guide.

Automatic Scaling Tools

In addition to the features described in the previous sections, the Simulink
Fixed Point software provides you with two automatic scaling (autoscaling)
tools:

¢ Fixed-Point Advisor
¢ Fixed-Point Tool
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Fixed-Point Advisor

The Fixed-Point Advisor provides a set of tasks to facilitate converting a
floating-point model or subsystem to an equivalent fixed-point representation.

Note After conversion, use the Fixed-Point Tool to refine the model scaling.

For more information, see “Fixed-Point Advisor” on page 12-2.

To learn how to use the Fixed-Point Advisor, see “Working with the
Fixed-Point Advisor” on page 5-2.

Fixed-Point Tool

The Fixed-Point Tool provides a graphical user interface that allows you to
configure the parameters associated with automatic scaling. The tool collects
range data for model objects, either from design minimum and maximum
values that objects specify explicitly, or from logged minimum and maximum
values that occur during simulation. It uses this information to propose
fixed-point scaling that covers the range with maximum precision.

Using the tool, you can view the simulation results and scaling proposals for a
model. After reviewing the scaling proposals, you can choose whether or not
to apply them to objects in your model.

Note To prepare a model for conversion and obtain an initial scaling, first
use the Fixed-Point Advisor.

For more information, see “Overview of the Fixed-Point Tool” on page 6-2.

To learn how to use the Fixed-Point Tool, refer to Chapter 6, “Fixed-Point
Tool”.
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Note You can also use the autofixexp script to automatically change the
scaling for each Simulink block that has generalized fixed-point output and
does not have its scaling locked. The script uses the maximum and minimum
values logged during the last simulation run. The scaling is changed such
that the simulation range is covered and the precision is maximized.

Code Generation Capabilities

With the Simulink Coder product, the Simulink Fixed Point software can
generate C code. The code generated from fixed-point blocks uses only integer
types and automatically includes all operations, such as shifts, needed to
account for differences in fixed-point locations.

You can use the generated code on embedded fixed-point processors or rapid
prototyping systems even if they contain a floating-point processor. The code
is structured so that key operations can be readily replaced by optimized
target-specific libraries that you supply. You can also use Target Language
Compiler to customize the generated code. Refer to Chapter 11, “Code
Generation” for more information about code generation using fixed-point
blocks.
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Example: Converting from Doubles to Fixed Point

In this section...

“About This Example” on page 1-41
“Block Descriptions” on page 1-42

“Simulations” on page 1-42

About This Example

The purpose of this example is to show you how to simulate a continuous
real-world doubles signal using a generalized fixed-point data type. Although
simple in design, the model gives you an opportunity to explore many of the
important features of the Simulink Fixed Point software, including

® Data types

® Scaling

* Rounding

® Logging minimum and maximum simulation values to the workspace

¢ Overflow handling

This example uses the model in the fxpdemo_dbl12fix demo. You launch this
demo by typing its name at the MATLAB command line:

fxpdemo_dbl2fix
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File Edit WView Simulaton Format Tools Help
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Signal Zere-Drder | DplioFikFt FixFtto-Dtl p—
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Ij Copyright 1820-2008 The MathWorks, Inc.
Ready [100% | | [FixedStepDiscrete

The sections that follow describe the model and its simulation results.

Block Descriptions

For purposes of this documentation example, you configure the Signal
Generator block to output a sine wave signal with an amplitude defined on the
interval [ -5 5]. The Signal Generator block always outputs double-precision
numbers.

The Data Type Conversion (Dbl-to-FixPt) block converts the double-precision
numbers from the Signal Generator block into one of the Simulink Fixed
Point data types. For simplicity, the size of the output signal is 5 bits in this
example.

The Data Type Conversion (FixPt-to-Dbl) block converts one of the Simulink
Fixed Point data types into a Simulink data type. In this example, it outputs
double-precision numbers.

Simulations

The following sections describe how to simulate the model using
binary-point-only scaling and [Slope Bias] scaling.
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Binary-Point-Only Scaling

When using binary-point-only scaling, your goal is to find the optimal
power-of-two exponent E, as defined in “Scaling” on page 2-5. For this scaling
mode, the fractional slope F'is 1 and there is no bias.

To run the simulation:

1 Configure the Signal Generator block to output a sine wave signal with an
amplitude defined on the interval [-5 5].

b
c

d

Double-click the Signal Generator block to open the Block Parameters
dialog.

Set the Wave form parameter to sine.
Set the Amplitude parameter to 5.
Click OK.

2 Configure the Data Type Conversion (Dbl-to-FixPt) block.

e

Double-click the Dbl-to-FixPt block to open the Block Parameters
dialog.

Verify that the Output data type parameter is fixdt(1,5,2).
fixdt(1,5,2) specifies a 5-bit, signed, fixed-point number with scaling
2~ -2, which puts the binary point two places to the left of the rightmost
bit. Hence the maximum value is 011.11 = 3.75, a minimum value of
100.00 = -4.00, and the precision is (1/2)% = 0.25.

Verify that the Integer rounding mode parameter is Floor. Floor
rounds the fixed-point result toward negative infinity.

Select the Saturate on integer overflow checkbox to prevent the block
from wrapping on overflow.

Click OK.

3 Select Simulation > Start in your Simulink model window.

The Scope displays the real-world and fixed-point simulation results.
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The simulation demonstrates the quantization effects of fixed-point
arithmetic. Using a 5-bit word with a precision of (1/2)% = 0.25 produces a
discretized output that does not span the full range of the input signal.

If you want to span the complete range of the input signal with 5 bits using
binary-point-only scaling, then your only option is to sacrifice precision.
Hence, the output scaling is 2* -1, which puts the binary point one place to
the left of the rightmost bit. This scaling gives a maximum value of 0111.1 =
7.5, a minimum value of 1000.0 = -8.0, and a precision of (1/2)! = 0.5.

To simulate using a precision of 0.5, set the Output data type parameter of
the Data Type Conversion (Dbl-to-FixPt) block to fixdt(1,5,1) and rerun
the simulation.

[Slope Bias] Scaling
When using [Slope Bias] scaling, your goal is to find the optimal fractional
slope F and fixed power-of-two exponent E, as defined in “Scaling” on page
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2-5. There 1s no bias for this example because the sine wave is on the interval
[-5 5].

To arrive at a value for the slope, you begin by assuming a fixed power-of-two
exponent of -2. To find the fractional slope, you divide the maximum value of
the sine wave by the maximum value of the scaled 5-bit number. The result
1s 5.00/3.75 = 1.3333. The slope (and precision) is 1.3333.(0.25) = 0.3333.
You specify the [Slope Bias] scaling as [0.3333 0] by entering the expression
fixdt(1,5,0.3333,0) as the value of the Output data type parameter.

You could also specify a fixed power-of-two exponent of -1 and a corresponding
fractional slope of 0.6667. The resulting slope is the same since E 1s reduced
by 1 bit but F'is increased by 1 bit. The Simulink Fixed Point software would
automatically store F as 1.3332 and E as -2 because of the normalization
condition of 1 < F < 2.

To run the simulation:
1 Configure the Signal Generator block to output a sine wave signal with an

amplitude defined on the interval [-5 5].

a Double-click the Signal Generator block to open the Block Parameters
dialog.

b Set the Wave form parameter to sine.
¢ Set the Amplitude parameter to 5.
d Click OK.

2 Configure the Data Type Conversion (Dbl-to-FixPt) block.

a Double-click the Dbl-to-FixPt block to open the Block Parameters
dialog.

b Set the Output data type parameter to fixdt(1,5,0.3333,0) to
specify [Slope Bias] scaling as [0.3333 0].

¢ Verify that the Integer rounding mode parameter is Floor. Floor
rounds the fixed-point result toward negative infinity.

d Select the Saturate on integer overflow checkbox to prevent the block
from wrapping on overflow.

e Click OK.
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3 Select Simulation > Start in your Simulink model window.
The Scope displays the real-world and fixed-point simulation results.

—ipix]
SELPL ABE BA S -

Ideal [Magenta]  Fized-Poi

You do not need to find the slope using this method. You need only the range
of the data you are simulating and the size of the fixed-point word used in the

simulation. You can achieve reasonable simulation results by selecting your
scaling based on the formula

(max _value —min _value)
2%% —1

2

where

® max_value is the maximum value to be simulated.
® min_value is the minimum value to be simulated.

® ws is the word size in bits.
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e 2ws .1 1is the largest value of a word with size ws.

For this example, the formula produces a slope of 0.32258.
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® “Overview” on page 2-2
¢ “Fixed-Point Numbers” on page 2-3
¢ “Floating-Point Numbers” on page 2-23
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Overview

In digital hardware, numbers are stored in binary words. A binary word
1s a fixed-length sequence of binary digits (1’s and 0’s). The way in which
hardware components or software functions interpret this sequence of 1’s
and 0’s is described by a data type.

Binary numbers are represented as either fixed-point or floating-point data
types. A fixed-point data type is characterized by the word size in bits, the
binary point, and whether it is signed or unsigned. The binary point is the
means by which fixed-point values are scaled. With the Simulink Fixed Point
software, fixed-point data types can be integers, fractionals, or generalized
fixed-point numbers. The main difference between these data types is their
default binary point.

Floating-point data types are characterized by a sign bit, a fraction (or
mantissa) field, and an exponent field. The blockset adheres to the IEEE
Standard 754-1985 for Binary Floating-Point Arithmetic (referred to simply
as the IEEE Standard 754 throughout this guide) and supports singles,
doubles, and a nonstandard IEEE-style floating-point data type.

When choosing a data type, you must consider these factors:

The numerical range of the result

The precision required of the result

The associated quantization error (i.e., the rounding mode)

The method for dealing with exceptional arithmetic conditions

These choices depend on your specific application, the computer architecture
used, and the cost of development, among others.

With the Simulink Fixed Point software, you can explore the relationship
between data types, range, precision, and quantization error in the modeling
of dynamic digital systems. With the Simulink Coder product, you can
generate production code based on that model.
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Fixed-Point Numbers

In this section...

“About Fixed-Point Numbers” on page 2-3

“Signed Fixed-Point Numbers” on page 2-4

“Binary Point Interpretation” on page 2-4

“Scaling” on page 2-5

“Quantization” on page 2-7

“Range and Precision” on page 2-9

“Constant Scaling for Best Precision” on page 2-12
“Fixed-Point Data Type and Scaling Notation” on page 2-15
“Scaled Doubles” on page 2-17

“Example: Scaled Doubles” on page 2-19

“Example: Port Data Type Display” on page 2-22

About Fixed-Point Numbers

Fixed-point numbers and their data types are characterized by their word
size in bits, binary point, and whether they are signed or unsigned. The
Simulink Fixed Point software supports integers, fixed-point numbers. The
main difference among these data types is their binary point.

Note Fixed-point numbers can have a word size up to 128 bits.

A common representation of a binary fixed-point number , either signed or
unsigned, is shown in the following figure.

| Ibws—l | bws—?. | | bEl bd_- I bE | b?. | I'i:':l | bO |
MSB ’[ LSB
Binary point
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where

® b, are the binary digits (bits)
® ws is the word length in bits

® The most significant bit (MSB) is the leftmost bit, and is represented by
location b, ;

® The least significant bit (LSB) is the rightmost bit, and is represented
by location b,

® The binary point is shown four places to the left of the LSB

Signed Fixed-Point Numbers

Computer hardware typically represents the negation of a binary fixed-point
number in three different ways: sign/magnitude, one’s complement, and two’s
complement. Two’s complement is the preferred representation of signed
fixed-point numbers and supported by the Simulink Fixed Point software.

Negation using two’s complement consists of a bit inversion (translation into
one’s complement) followed by the addition of a one. For example, the two’s
complement of 000101 1s 111011.

Whether a fixed-point value is signed or unsigned is usually not encoded
explicitly within the binary word; that is, there is no sign bit. Instead, the
sign information is implicitly defined within the computer architecture.

Binary Point Interpretation

The binary point is the means by which fixed-point numbers are scaled. It is
usually the software that determines the binary point. When performing basic
math functions such as addition or subtraction, the hardware uses the same
logic circuits regardless of the value of the scale factor. In essence, the logic
circuits have no knowledge of a scale factor. They are performing signed or
unsigned fixed-point binary algebra as if the binary point is to the right of b,.
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Scaling

The dynamic range of fixed-point numbers is much less than floating-point
numbers with equivalent word sizes. To avoid overflow conditions and
minimize quantization errors, fixed-point numbers must be scaled.

With the Simulink Fixed Point software, you can select a fixed-point data type
whose scaling is defined by its binary point, or you can select an arbitrary
linear scaling that suits your needs. This section presents the scaling choices
available for fixed-point data types.

You can represent a fixed-point number by a general slope and bias encoding
scheme

V~V=S8Q+B,

where

® Vis an arbitrarily precise real-world value.

V is the approximate real-world value.

@, the stored value, is an integer that encodes V.
S = F 2% is the slope.
B is the bias.

The slope is partitioned into two components:

e 2% gpecifies the binary point. E is the fixed power-of-two exponent.

e F'is the slope adjustment factor. It is normalized such that 1 < F< 2.

Note S and B are constants and do not show up in the computer hardware
directly. Only the quantization value @ is stored in computer memory.

The scaling modes available to you within this encoding scheme are described
in the sections that follow. For detailed information about how the supported
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scaling modes effect fixed-point operations, refer to “Recommendations for
Arithmetic and Scaling” on page 3-34.

Binary-Point-Only Scaling

Binary-point-only or power-of-two scaling involves moving the binary point
within the fixed-point word. The advantage of this scaling mode is to minimize
the number of processor arithmetic operations.

With binary-point-only scaling, the components of the general slope and bias
formula have the following values:

e I'=1
e S =F2F=2F
* B=0

The scaling of a quantized real-world number is defined by the slope S, which
is restricted to a power of two. The negative of the power-of-two exponent is
called the fraction length. The fraction length is the number of bits to the
right of the binary point. For Binary-Point-Only scaling, specify fixed-point
data types as

® signed types — fixdt (1, WordLength, FractionLength)

® unsigned types — fixdt (0, WordLength, FractionLength)

Integers are a special case of fixed-point data types. Integers have a trivial
scaling with slope 1 and bias 0, or equivalently with fraction length 0. Specify
integers as

® gsigned integer — fixdt (1, WordLength, 0)

® unsigned integer — fixdt (0, WordLength, 0)

Slope and Bias Scaling

When you scale by slope and bias, the slope S and bias B of the quantized
real-world number can take on any value. The slope must be a positive
number. Using slope and bias, specify fixed-point data types as
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e fixdt(Signed, WordLength, Slope, Bias)

Unspecified Scaling

Specify fixed-point data types with an unspecified scaling as
e fixdt(Signed, WordLength)

Simulink signals, parameters, and states must never have unspecified
scaling. When scaling is unspecified, you must use some other mechanism
such as automatic best precision scaling to determine the scaling that the
Simulink software uses.

Quantization

The quantization @ of a real-world value V is represented by a weighted sum
of bits. Within the context of the general slope and bias encoding scheme, the
value of an unsigned fixed-point quantity is given by

V=_.

ws-1 )
z bi2l +B,

1=0
while the value of a signed fixed-point quantity is given by
~ ws—2 .
V=8.-b, 12+ Y 52 |+B,
1=0
where

® b, are binary digits, with b, = 1,0, for : = 0,1,...,ws—1.
® The word size in bits is given by ws, with ws =1, 2, 3,..., 128.

e Sis given by F2F, where the scaling is unrestricted because the binary
point does not have to be contiguous with the word.

b, are called bit multipliers and 2! are called the weights.
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Example: Fixed-Point Format

Formats for 8-bit signed and unsigned fixed-point values are shown in the
following figure.

0 0 1 1 0 1 0 1 Unsigned data type

1 o] 1|1 lo 1|01 | Signeddatatype

Note that you cannot discern whether these numbers are signed or unsigned
data types merely by inspection since this information is not explicitly
encoded within the word.

The binary number 0011.0101 yields the same value for the unsigned and
two’s complement representation because the MSB = 0. Setting B = 0 and
using the appropriate weights, bit multipliers, and scaling, the value is

V- (F2¥)q@=2F {wflbi?]

=0
=2—4(0><27 +0x28 +1x2% +1x2% +0x23 +1x22 + 0x 2! +1><2°)
= 3.3125.

Conversely, the binary number 1011.0101 yields different values for the
unsigned and two’s complement representation since the MSB = 1.

Setting B = 0 and using the appropriate weights, bit multipliers, and scaling,
the unsigned value is

V= (F2¥)q@=2F {wilbi?]

1=0
=274 (1x27 +0x25 +1x2% +1x2% +0x 2% +1x2% + 0x 2" +1x2°)
=11.3125,
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while the two’s complement value is

- ws—2
E E -1 3
V= (F2F)Q =2 | by, 247 + 26 b2
1=
=2—4(—1><27+0><26+1><25+1><24+0><23+1><22+0><21+1><20)

=-4.6875.

Range and Precision

The range of a number gives the limits of the representation, while

the precision gives the distance between successive numbers in the
representation. The range and precision of a fixed-point number depends on
the length of the word and the scaling.

Range

The range of representable numbers for an unsigned and two’s complement
fixed-point number of size ws, scaling S, and bias B is illustrated in the
following figure.

B S _ 1)+ B

positive numbars

S—e® -+ B 0 S.@*-1_1)+B

negative numbers positive numbers

For both the signed and unsigned fixed-point numbers of any data type, the
number of different bit patterns is 2%s.

For example, if the fixed-point data type is an integer with scaling defined as
S =1 and B = 0, then the maximum unsigned value is 257!, because zero must
be represented. In two’s complement, negative numbers must be represented
as well as zero, so the maximum value is 2¢5-1-1. Additionally, since there is
only one representation for zero, there must be an unequal number of positive
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and negative numbers. This means there is a representation for —2%5-! but
not for 2@s-1,

Precision

The precision of a data type is given by the slope. In this usage, precision
means the difference between neighboring representable values.

Fixed-Point Data Type Parameters

The low limit, high limit, and default binary-point-only scaling for the
supported fixed-point data types discussed in “Binary Point Interpretation”
on page 2-4 are given in the following table. See “Limitations on Precision” on
page 3-3 and “Limitations on Range” on page 3-28 for more information.

Fixed-Point Data Type Range and Default Scaling

Default
Scaling
Name Data Type Low Limit High Limit (~Precision)
Unsigned | fixdt(0,ws,0) 0 2Ws . 1 1
Integer
Signed fixdt(1,ws,0) -ows-1 2ws-1 4 1
Integer
Unsigned | fixdt(0,ws,fl) | O (2vs - 1)21 o-fl
Binary
Point
Signed fixdt(1,ws,fl) | -2ws-1-f (2vs-1. 1)24 2l
Binary
Point
Unsigned | fixdt(0,ws,s,b)| 0 s(2"-1)+b S
Slope
Bias
Signed fixdt(1,ws,s,b)| -s@" - )+b |[s@¥-1-1)+b|s
Slope
Bias
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s = Slope, b = Bias, ws = WordLength, fI = FractionLength

Range of an 8-Bit Fixed-Point Data Type — Binary-Point-Only

Scaling

The precisions, range of signed values, and range of unsigned values for an
8-bit generalized fixed-point data type with binary-point-only scaling are
listed in the follow table. Note that the first scaling value (2!) represents a

binary point that is not contiguous with the word.

Range of Signed
Values (Low,

Range of Unsigned

Scaling Precision High) Values (Low, High)
20 2.0 -256, 254 0, 510

22 1.0 -128, 127 0, 255

21 0.5 -64, 63.5 0, 127.5

2 0.25 -32, 31.75 0, 63.75

i 0.125 -16, 15.875 0, 31.875

24 0.0625 -8, 7.9375 0, 15.9375

25 0.03125 -4, 3.96875 0, 7.96875

26 0.015625 -2, 1.984375 0, 3.984375
2 0.0078125 -1, 0.9921875 0, 1.9921875
28 0.00390625 -0.5, 0.49609375 0, 0.99609375

Range of an 8-Bit Fixed-Point Data Type — Slope and Bias

Scaling

The precision and ranges of signed and unsigned values for an 8-bit fixed-point
data type using slope and bias scaling are listed in the following table. The
slope starts at a value of 1.25 with a bias of 1.0 for all slopes. Note that the
slope is the same as the precision.
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Range of Signed Range of Unsigned
Bias Slope/Precision| Values (low, high) | Values (low, high)
1 1.25 -159, 159.75 1, 319.75
1 0.625 -79, 80.375 1, 160.375
1 0.3125 -39, 40.6875 1, 80.6875
1 0.15625 -19, 20.84375 1, 40.84375
1 0.078125 -9, 10.921875 1, 20.921875
1 0.0390625 -4, 5.9609375 1, 10.9609375
1 0.01953125 -1.5, 3.48046875 1, 5.98046875
1 0.009765625 -0.25, 2.240234375 1, 3.490234375
1 0.0048828125 0.375, 1.6201171875 1, 2.2451171875

Constant Scaling for Best Precision

The following fixed-point Simulink blocks provide a mode for scaling
parameters whose values are constant vectors or matrices:

e Constant

Discrete FIR Filter

* (Gain

Relay

Repeating Sequence Stair

This scaling mode is based on binary-point-only scaling. Using this mode, you
can scale a constant vector or matrix such that a common binary point is
found based on the best precision for the largest value in the vector or matrix.

Constant scaling for best precision is available only for fixed-point data types
with unspecified scaling. All other fixed-point data types use their specified
scaling. You can use the Data Type Assistant (see “Using the Data Type
Assistant” in Simulink User’s Guide) on a block dialog box to enable the best
precision scaling mode.
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1 On a block dialog box, click the Show data type assistant button
3

The Data Type Assistant appears.
2 In the Data Type Assistant, and from the Mode list, select Fixed point.

The Data Type Assistant displays additional options associated with
fixed-point data types.

3 From the Scaling list, select Best precision.

—Data Type Assistant

Mode: IFixed poink vI Signedness: ISigned vI ‘Whord length: IIE-
Scaling: IBest precision vl
Data bvpe override: IInherit vl

Fixed-point details
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To understand how you might use this scaling mode, consider a 3-by-3 matrix
of doubles, M, defined as

3.3333e-003 3.3333e-004 3.3333e-005
3.3333e-002 3.3333e-003 3.3333e-004
3.3333e-001 3.3333e-002 3.3333e-003

Now suppose you specify M as the value of the Gain parameter for a Gain
block. The results of specifying your own scaling versus using the constant
scaling mode are described here:

® Specified Scaling

Suppose the matrix elements are converted to a signed, 10-bit generalized
fixed-point data type with binary-point-only scaling of 2°7 (that is, the
binary point is located seven places to the left of the right most bit). With
this data format, M becomes

0 0 0
3.1250e-002 O 0
3.3594e-001 3.1250e-002 O

Note that many of the matrix elements are zero, and for the nonzero
entries, the scaled values differ from the original values. This is because a
double is converted to a binary word of fixed size and limited precision for
each element. The larger and more precise the conversion data type, the
more closely the scaled values match the original values.

¢ Constant Scaling for Best Precision

If M is scaled based on its largest matrix value, you obtain

2.9297e-003 O 0
3.3203e-002 2.9297e-003 O
3.3301e-001 3.3203e-002 2.9297e-003

Best precision would automatically select the fraction length that
minimizes the quantization error. Even though precision was maximized
for the given word length, quantization errors can still occur. In this
example, a few elements still quantize to zero.
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Fixed-Point Data Type and Scaling Notation

Simulink data type names must be valid MATLAB identifiers with less than

128 characters. The data type name provides information about container
type, number encoding, and scaling.

You can represent a fixed-point number using the fixed-point scaling equation

V=V=5Q+B,

where

e Vis the real-world value.

® V is the approximate real-world value.

e S = F2F ig the slope.

e [is the slope adjustment factor.

® F is the fixed power-of-two exponent.

® (@ is the stored integer.

® Bis the bias.

For more information, see “Scaling” on page 2-5.

The following table provides a key for various symbols that appear in

Simulink products to indicate the data type and scaling of a fixed-point value.

Symbol

Description

Example

Container Type

ufix Unsigned fixed-point ufix8 is an 8-bit unsigned
data type fixed-point data type
sfix Signed fixed-point data | sfix128 is a 128-bit signed

type

fixed-point data type
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Symbol

Description

Example

fltu

Scaled Doubles override
of an unsigned
fixed-point data type
(ufix)

f1tu32 is a scaled doubles
override of ufix32

flts

Scaled Doubles override
of a signed fixed-point
data type (sfix)

flts64 is a scaled doubles
override of sfix64

Number Encoding

e 107 125e8 equals 125* (107 (8))
n Negative n31 equals -31
p Decimal point 1p5 equals 1.5

p2 equals 0.2

Scaling Encoding

S Slope ufix16_S5 B7 is a 16-bit
unsigned fixed-point data
type with Slope of 5 and
Bias of 7

B Bias ufix16_S5 B7 is a 16-bit
unsigned fixed-point data
type with Slope of 5 and
Bias of 7

E Fixed exponent (27) sfix32_ En31 is a 32-bit

A negative fixed s1gned fl)md;pmnt data type
. with a fraction length of 31
exponent describes
the fraction length
F Slope adjustment factor | ufix16_F1p5_En50

1s a 16-bit unsigned
fixed-point data type with a
SlopeAdjustmentFactor of
1.5 and a FixedExponent
of -50
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Symbol Description Example
C,c,D, ord Compressed encoding for | No example available. For
Bias backwards compatibility
only.
Note If you pass To i1dentify and replace calls
. . to slDataTypeAndScale,
this string to the P
use the “Check for calls
slDataTypeAndScale »
. ) to slDataTypeAndScale
function, it returns a Model Advisor check
valid fixdt data type. ’
Tort Compressed encoding for | No example available. For

Slope

Note If you pass
this string to the

.Jbackwards compatibility
only.

To identify and replace calls
to slDataTypeAndScale,
use the “Check for calls

;;lDataTypeAnd.Sca.le, to slDataTypeAndScale”
it returns a valid fixdt :

Model Advisor check.
data type.

Scaled Doubles

What are Scaled Doubles?

Scaled doubles are a hybrid between floating-point and fixed-point numbers.
The Simulink Fixed Point software stores them as doubles with the
scaling, sign, and word length information retained. For example, the
storage container for a fixed-point data type sfix16_En14 is int16. The
storage container of the equivalent scaled doubles data type, f1ts16_En14
is floating-point double. For details of the fixed-point scaling notation,

see “Fixed-Point Data Type and Scaling Notation” on page 2-15. The
Simulink Fixed Point software applies the scaling information to the stored
floating-point double to obtain the real-world value. Storing the value in a
double almost always eliminates overflow and precision issues.

2-17



2 Data Types and Scaling

2-18

What is the Difference between Scaled Double and Double Data
Types?. The storage container for both the scaled double and double data
types 1is floating-point double. Therefore both data type override settings,
Double and Scaled double, provide the range and precision advantages
of floating-point doubles. Scaled doubles retain the information about the
specified data type and scaling, but doubles do not retain this information.

Consider an example where you are storing 0.75001 degrees Celsius in a data
type sfix16_En13. For this data type:

e The slope, S = 2713,
e The bias, B=0.

Using the scaling equation V = ‘N/ = S@® + B, where Vis the real-world value
and @ 1is the stored value.

e« B=0.
e V =S8Q=21¢=0.75001.

°* @= ‘}/ S =0.75001/2"1% = 6144.08192.

The data type sfix16_En13 can only represent integers, so the ideal value
of @ is quantized to 6144 causing precision loss.

If you override the data type sfix16_En13 with Double, the data type changes
to Double and you lose the information about the scaling. The stored-value
equals the real-world value 0.75001.

If you override the data type sfix16_En13 with Scaled Double, the data type
changes to f1ts16_En13. The scaling is still given by En13 and is identical
to that of the original data type. The only difference is the storage container
used to hold the stored value which is now double so the stored-value is
6144.08192. This example demonstrates one advantage of using scaled
doubles: the virtual elimination of quantization errors.
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When to Use Scaled Doubles

The Fixed-Point Tool enables you to perform various data type overrides
on fixed-point signals in your simulations. Use scaled doubles to override
the fixed-point data types and scaling using double-precision numbers to
avoid quantization effects. Overriding the fixed-point data types provides a
floating-point benchmark that represents the ideal output.

Scaled doubles are useful for:

® Testing and debugging
® Applying data type overrides to individual subsystems

If you apply a data type override to subsystems in your model rather
than to the whole model, Scaled doubles provide the information that the
fixed-point portions of the model need for consistent data type propagation.

Example: Scaled Doubles

This example uses the ex_scaled_double model to show how you can avoid
precision loss by overriding the data types in your model with scaled doubles.
For more information about scaled doubles, see “Scaled Doubles” on page 2-17.
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E! eX_scaled _double ;IEIEI

Wieww  Simulation Format  Tools  Help

File Edit

About the Model

D|£E§|%E|@=ﬁ’ﬁlﬂq 4 l|1|:l.|:| IN-:nrmaI j|

Bitwize
W oo E— |

41
0x=FF
constant Bitwize Stored Integer Display
Operstar

i I |

Dizplay

Ready [109% | [FixedstepDiscrete v
In this model:

The Constant block output data type is fixdt(1,8,4).

The Bitwise Operator block uses the AND operator and the bit mask 0xFF to
pass the input value to the output. Because the Treat mask as parameter
1s set to Stored Integer, the block outputs the stored integer value, S, of
its input. The encoding scheme is V=S@Q+B, where V is the real-world value
and @ is the stored integer value. For more information, see “Scaling”

on page 2-5.

Running the Example

Open the ex_scaled_double model. At the MATLAB command line, enter:
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run(docpath(fullfile(docroot, 'toolbox', 'fixpoint', 'examples’', 'ex_scaled_double.mdl')))

2 From the model menu, select Tools > Fixed-Point > Fixed-Point Tool.
The Fixed-Point Tool opens.

3 In the Fixed-Point Tool, set the Data type override parameter to Use
local settings and click Apply.

4 From the model menu, select Simulation > Start.

The simulation runs and the Display block displays 4.125 as the output
value of the Constant block. The Stored Integer Display block displays
0100 0010, which is the binary equivalent of the stored integer value.
Precision loss occurs because the output data type, fixdt(1,8,4), cannot
represent the output value 4.1 exactly.

5 In the Fixed-Point Tool, set the Data type override parameter to Scaled
double and the Data type override applies to parameter to All
numeric types. Then click Apply and rerun the simulation.

Note You cannot use a Data type override setting of Double because the
Bitwise Operator block does not support floating-point data types.

The simulation runs and this time the Display block correctly displays 4.1
as the output value of the Constant block. The Stored Integer Display
block displays 65, which is the binary equivalent of the stored integer
value. Because the model uses scaled doubles to override the data type
fixdt(1,8,4), the compiled output data type changes to f1ts8 En4, which
1s the scaled doubles equivalent of fixdt(1,8,4). No precision loss occurs
because the scaled doubles retain the information about the specified data
type and scaling, and they use a double to hold the stored value.
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Example: Port Data Type Display

To display the data types for the ports in your model.

1 From the Simulink Format menu, point to Port/Signal Displays, and
then click Port Data Types .

The port display for fixed-point signals consists of three parts: the data
type, the number of bits, and the scaling. These three parts reflect the block
Output data type parameter value or the data type and scaling that is
inherited from the driving block or through back propagation.

The following model displays its port data types.

—ioix]

File Edit WView Simulaton Format Tools Help

D|@u§|%ﬁ|<}==§{r|9c2|) II1C.C INl:urmaI j|@
'ﬁt T - Convert 16 Sp2 B L w12 B I doutle =
el F'y —
Sins Wave In1 Out1
2 rad
o

| . -
: . Comwart 16 _E ; et HE ST I double —=
ez Product Cuta
Ready [100% | [T=0.00 [ode4s

In the model, the data type displayed with the In1 block indicates that the
output data type name is sfix16_Sp2 B10. This corresponds to fixdt (1,

16, 0.2, 10) which is a signed 16 bit fixed-point number with slope 0.2 and
bias 10.0. The data type displayed with the In2 block indicates that the
output data type name is sfix16_En6. This corresponds to fixdt(1, 16, 6)
which is a signed 16 bit fixed-point number with fraction length of 6.
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Floating-Point Numbers

In this section...

“About Floating-Point Numbers” on page 2-23
“Scientific Notation” on page 2-23
“The IEEE Format” on page 2-25

“Range and Precision” on page 2-27

“Exceptional Arithmetic” on page 2-29

About Floating-Point Numbers

Fixed-point numbers are limited in that they cannot simultaneously represent
very large or very small numbers using a reasonable word size. This limitation
can be overcome by using scientific notation. With scientific notation, you can
dynamically place the binary point at a convenient location and use powers of
the binary to keep track of that location. Thus, you can represent a range of
very large and very small numbers with only a few digits.

You can represent any binary floating-point number in scientific notation
form as f x 2¢, where f is the fraction (or mantissa), 2 is the radix or base
(binary in this case), and e is the exponent of the radix. The radix is always a
positive number, while f and e can be positive or negative.

When performing arithmetic operations, floating-point hardware must take
into account that the sign, exponent, and fraction are all encoded within the
same binary word. This results in complex logic circuits when compared with
the circuits for binary fixed-point operations.

The Simulink Fixed Point software supports single-precision and
double-precision floating-point numbers as defined by the IEEE Standard
754. Additionally, a nonstandard IEEE-style number is supported.

Scientific Notation

A direct analogy exists between scientific notation and radix point notation.
For example, scientific notation using five decimal digits for the fraction
would take the form

2-23



2 Data Types and Scaling

2-24

+d.dddd x10P = +ddddd.0 x10P~* = +0.ddddd x 107",

where d = 0,...,9 and p is an integer of unrestricted range.

Radix point notation using five bits for the fraction is the same except for
the number base

+b.bbbbx 29 = +tbbbbb.0x 2974 = +0.bbbbbx 2911

where b = 0,1 and q is an integer of unrestricted range.

For fixed-point numbers, the exponent is fixed but there is no reason why
the binary point must be contiguous with the fraction. For example, a word
consisting of three unsigned bits is usually represented in scientific notation
in one of these four ways.

bbb. = bbb.x 2°

bbb =bbb.x27!
b.bb = bbb.x 272
bbb =bbb.x273

If the exponent were greater than 0 or less than -3, then the representation
would involve lots of zeros.
bbb00000. = bbb.x 2°
bbb00. = bbb.x 2
.00bbb = bbb.x 27"
.00000bbb = bbb.x 278

These extra zeros never change to ones, however, so they don’t show up in

the hardware. Furthermore, unlike floating-point exponents, a fixed-point

exponent never shows up in the hardware, so fixed-point exponents are not
limited by a finite number of bits.
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Note Restricting the binary point to being contiguous with the fraction is
unnecessary; the Simulink Fixed Point software allows you to extend the
binary point to any arbitrary location.

The IEEE Format

The IEEE Standard 754 has been widely adopted, and is used with virtually
all floating-point processors and arithmetic coprocessors—with the notable
exception of many DSP floating-point processors.

Among other things, this standard specifies four floating-point number
formats, of which singles and doubles are the most widely used. Each format
contains three components: a sign bit, a fraction field, and an exponent field.
These components, as well as the specific formats for singles and doubles, are
discussed in the sections that follow.

The Sign Bit

While two’s complement is the preferred representation for signed fixed-point
numbers, IEEE floating-point numbers use a sign/magnitude representation,
where the sign bit is explicitly included in the word. Using this representation,
a sign bit of 0 represents a positive number and a sign bit of 1 represents a
negative number.

The Fraction Field

In general, floating-point numbers can be represented in many different ways
by shifting the number to the left or right of the binary point and decreasing
or increasing the exponent of the binary by a corresponding amount.

To simplify operations on these numbers, they are normalized in the IEEE
format. A normalized binary number has a fraction of the form 1.f where f has
a fixed size for a given data type. Since the leftmost fraction bit is always a 1,
1t 1s unnecessary to store this bit and is therefore implicit (or hidden). Thus,
an n-bit fraction stores an n+1-bit number. The IEEE format also supports
denormalized numbers, which have a fraction of the form 0.f. Normalized and
denormalized formats are discussed in more detail in the next section.
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The Exponent Field

In the IEEE format, exponent representations are biased. This means a fixed
value (the bias) is subtracted from the field to get the true exponent value.
For example, if the exponent field is 8 bits, then the numbers 0 through 255
are represented, and there is a bias of 127. Note that some values of the
exponent are reserved for flagging Inf (infinity), NaN (not-a-number), and
denormalized numbers, so the true exponent values range from -126 to 127.
See the sections “Inf” on page 2-30 and “NaN” on page 2-30.

Single-Precision Format

The IEEE single-precision floating-point format is a 32-bit word divided into a
1-bit sign indicator s, an 8-bit biased exponent e, and a 23-bit fraction f. For
more information, see “The Sign Bit” on page 2-25, “The Exponent Field” on
page 2-26, and “The Fraction Field” on page 2-25. A representation of this
format is given below.

by byp by bo

8 e f

The relationship between this format and the representation of real numbers
is given by

D%2¢12")1.f) normalized, 0 < e < 255,

value = (-1)°* (26_126)(0.]”) denormalized, e =0, f >0,
exceptional value otherwise.

“Exceptional Arithmetic” on page 2-29 discusses denormalized values.

Double-Precision Format

The IEEE double-precision floating-point format is a 64-bit word divided into
a 1-bit sign indicator s, an 11-bit biased exponent e, and a 52-bit fraction f.For
more information, see “The Sign Bit” on page 2-25, “The Exponent Field” on
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page 2-26, and “The Fraction Field” on page 2-25. A representation of this
format is shown in the following figure.

bgg bgo b51 bD

8 e f

The relationship between this format and the representation of real numbers
is given by

(-1%(2°71923)1.f) normalized, 0 < e < 2047,

value = \(-1)%(2°71922)(0.f) denormalized, e =0, f >0,
exceptional value otherwise.

“Exceptional Arithmetic” on page 2-29 discusses denormalized values.

Range and Precision

The range of a number gives the limits of the representation while

the precision gives the distance between successive numbers in the
representation. The range and precision of an IEEE floating-point number
depend on the specific format.

Range

The range of representable numbers for an IEEE floating-point number with f
bits allocated for the fraction, e bits allocated for the exponent, and the bias of
e given by bias = 2¢V—1 is given below.

— negative numbers  <—»<—> pogltlve numbers —=

negative negative  positive positive
overflow undertflow underflow overflow
where
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¢ Normalized positive numbers are defined within the range 20-%%9) to
(2-2-1)x2bios,

¢ Normalized negative numbers are defined within the range —2(-%%9) to
—(2-27)xbias,

¢ Positive numbers greater than (2—-27/)x2%s and negative numbers greater
than —(2—27)x2%s gre overflows.

¢ Positive numbers less than 2(1-%%) and negative numbers less than —21-bias)
are either underflows or denormalized numbers.

e Zero is given by a special bit pattern, where e = 0 and f= 0.

Overflows and underflows result from exceptional arithmetic conditions.
Floating-point numbers outside the defined range are always mapped to +Inf.

Note You can use the MATLAB commands realmin and realmax to
determine the dynamic range of double-precision floating-point values for
your computer.

Precision

Because of a finite word size, a floating-point number is only an approximation
of the “true” value. Therefore, it is important to have an understanding of the
precision (or accuracy) of a floating-point result. In general, a value v with an
accuracy q is specified by v+q. For IEEE floating-point numbers,

b= (1@ (L)
and
q= 2—fxze—bias

Thus, the precision is associated with the number of bits in the fraction field.
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Note In the MATLAB software, floating-point relative accuracy is given by
the command eps, which returns the distance from 1.0 to the next larger
floating-point number. For a computer that supports the IEEE Standard 754,

eps = 292 or 2.22045 - 1016,

Floating-Point Data Type Parameters

The high and low limits, exponent bias, and precision for the supported
floating-point data types are given in the following table.

Data Type Low Limit High Limit Exponent Bias | Precision
Single 2:126 = 1038 2128 ~ 3 - 1038 127 223 = 107
Double 271022 = 9 - 1308 21024 > 9 - 10308 1023 252 = 1016
Nonstandard | 2 - s (2 - 2°f) - Qbias 2€-D .1 of

Because of the sign/magnitude representation of floating-point numbers,
there are two representations of zero, one positive and one negative. For both
representations e = 0 and f.0 = 0.0.

Exceptional Arithmetic

In addition to specifying a floating-point format, the IEEE Standard 754
specifies practices and procedures so that predictable results are produced
independently of the hardware platform. Specifically, denormalized numbers,
Inf, and NaN are defined to deal with exceptional arithmetic (underflow and

overflow).

If an underflow or overflow is handled as Inf or NaN, then significant
processor overhead is required to deal with this exception. Although the IEEE
Standard 754 specifies practices and procedures to deal with exceptional
arithmetic conditions in a consistent manner, microprocessor manufacturers
might handle these conditions in ways that depart from the standard. Some
of the alternative approaches, such as saturation and wrapping, are discussed
in Chapter 3, “Arithmetic Operations”.
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Denormalized Numbers

Denormalized numbers are used to handle cases of exponent underflow. When
the exponent of the result is too small (i.e., a negative exponent with too large
a magnitude), the result is denormalized by right-shifting the fraction and
leaving the exponent at its minimum value. The use of denormalized numbers
is also referred to as gradual underflow. Without denormalized numbers, the
gap between the smallest representable nonzero number and zero is much
wider than the gap between the smallest representable nonzero number and
the next larger number. Gradual underflow fills that gap and reduces the
impact of exponent underflow to a level comparable with roundoff among the
normalized numbers. Thus, denormalized numbers provide extended range
for small numbers at the expense of precision.

Inf

Arithmetic involving Inf (infinity) is treated as the limiting case of real
arithmetic, with infinite values defined as those outside the range of
representable numbers, or —o < (representable numbers) < co. With the
exception of the special cases discussed below (NaN), any arithmetic operation
involving Inf yields Inf. Inf is represented by the largest biased exponent
allowed by the format and a fraction of zero.

A NaN (not-a-number) is a symbolic entity encoded in floating-point format.
There are two types of NaN: signaling and quiet. A signaling NaN signals an
invalid operation exception. A quiet NaN propagates through almost every
arithmetic operation without signaling an exception. The following operations
result in a NaN: oco—o0, —oo+00, 0Xoo, 0/0, and oo/co.

Both types of NaN are represented by the largest biased exponent allowed by
the format and a fraction that is nonzero. The bit pattern for a quiet NaN is
given by 0.f where the most significant number in f must be a one, while the bit
pattern for a signaling NaN is given by 0.f where the most significant number
in f must be zero and at least one of the remaining numbers must be nonzero.
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® “Overview” on page 3-2

¢ “Limitations on Precision” on page 3-3

e “Limitations on Range” on page 3-28

¢ “Recommendations for Arithmetic and Scaling” on page 3-34
® “Parameter and Signal Conversions” on page 3-45

e “Rules for Arithmetic Operations” on page 3-50

¢ “Example: Conversions and Arithmetic Operations” on page 3-71
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Overview

When developing a dynamic system using floating-point arithmetic, you
generally don’t have to worry about numerical limitations since floating-point
data types have high precision and range. Conversely, when working with
fixed-point arithmetic, you must consider these factors when developing
dynamic systems:

e Overflow

Adding two sufficiently large negative or positive values can produce a
result that does not fit into the representation. This will have an adverse
effect on the control system.

® Quantization

Fixed-point values are rounded. Therefore, the output signal to the
plant and the input signal to the control system do not have the same
characteristics as the ideal discrete-time signal.

e Computational noise

The accumulated errors that result from the rounding of individual terms
within the realization introduce noise into the control signal.

e Limit cycles

In the ideal system, the output of a stable transfer function (digital filter)
approaches some constant for a constant input. With quantization, limit
cycles occur where the output oscillates between two values in steady state.

This chapter describes the limitations involved when arithmetic operations
are performed using encoded fixed-point variables. It also provides
recommendations for encoding fixed-point variables such that simulations
and generated code are reasonably efficient.
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Limitations on Precision

In this section...

“Introduction” on page 3-3

“Rounding” on page 3-3

“Padding with Trailing Zeros” on page 3-20

“Example: Limitations on Precision and Errors” on page 3-20

“Example: Maximizing Precision” on page 3-21

“Net Slope and Net Bias Precision” on page 3-22

Introduction

Computer words consist of a finite numbers of bits. This means that the
binary encoding of variables is only an approximation of an arbitrarily precise
real-world value. Therefore, the limitations of the binary representation
automatically introduce limitations on the precision of the value. For a general
discussion of range and precision, refer to “Range and Precision” on page 2-9.

The precision of a fixed-point word depends on the word size and binary point
location. Extending the precision of a word can always be accomplished with
more bits, but you face practical limitations with this approach. Instead, you
must carefully select the data type, word size, and scaling such that numbers
are accurately represented. Rounding and padding with trailing zeros are
typical methods implemented on processors to deal with the precision of
binary words.

Rounding

The result of any operation on a fixed-point number is typically stored in a
register that is longer than the number’s original format. When the result is
put back into the original format, the extra bits must be disposed of. That is,
the result must be rounded. Rounding involves going from high precision to
lower precision and produces quantization errors and computational noise.
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How to Choose a Rounding Mode

To choose the most suitable rounding mode for your application, you need to
consider your system requirements and the properties of each rounding mode.
The most important properties to consider are:

¢ Cost — Independent of the hardware being used, how much processing
expense does the rounding method require?

¢ Bias — What is the expected value of the rounded values minus the
original values?

¢ Possibility of overflow — Does the rounding method introduce the
possibility of overflow?

For more information on when to use each rounding mode, see “Rounding
Methods” in the Fixed-Point Toolbox User’s Guide.

Choosing a Rounding Mode for Diagnostic Purposes. Rounding
toward ceiling and rounding toward floor are sometimes useful for diagnostic
purposes. For example, after a series of arithmetic operations, you may not
know the exact answer because of word-size limitations, which introduce
rounding. If every operation in the series is performed twice, once rounding to
positive infinity and once rounding to negative infinity, you obtain an upper
limit and a lower limit on the correct answer. You can then decide if the result
is sufficiently accurate or if additional analysis is necessary.

Rounding Modes for Fixed-Point Simulink Blocks

Fixed-point Simulink blocks support the rounding modes shown in the
expanded drop-down menu of the following dialog box.
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E Function Block Parameters: Data Type Conversion x|

—Data Type Conversion

Convert the input to the data type and scaling of the output.

The conversion has two possible goals. One goal is to have the Real World Values of the
input and the output be equal. The other goal is to have the Stored Integer Values of the
input and the output be equal. Overflows and quantization errors can prevent the goal
from being fully achieved.

—Parameters
Quitput minirmurm: Qutput maximurn:
[ [

Qutput data type: I Inherit: Inherit via back propagation :I = |

[ Lock output data type setting against changes by the fixed-point toals

Input and output to have equal: IReaI World Value (R\WV) ;I

Integer rounding mode: IF|DDI’ E‘

[~ saturate on integer ¢ Ceiling
Convergent

Sample time (-1 for inher
I 1 MNearest
Round
Simplest

Zero

9 Ok [ o ] T

The following table illustrates the differences between these rounding modes:

Rounding Mode Description Tie Handling

Ceiling Rounds to the nearest | N/A
representable number
in the direction of
positive infinity.

Floor Rounds to the nearest N/A
representable number
in the direction of
negative infinity.

Zero Rounds to the nearest N/A
representable number
in the direction of zero.
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Rounding Mode

Description

Tie Handling

Convergent

Rounds to the nearest
representable number.

Ties are rounded
toward the nearest
even integer.

Nearest

Rounds to the nearest
representable number.

Ties are rounded to the
closest representable
number in the direction
of positive infinity.

Round

Rounds to the nearest
representable number.

For positive numbers,
ties are rounded
toward the closest
representable number
in the direction of
positive infinity.

For negative numbers,
ties are rounded
toward the closest
representable number
in the direction of
negative infinity.

Simplest

Automatically chooses
between Floor and
Zero to produce
generated code that is
as efficient as possible.

N/A

Rounding Mode: Ceiling

When you round toward ceiling, both positive and negative numbers are
rounded toward positive infinity. As a result, a positive cumulative bias is

introduced in the number.
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In the MATLAB software, you can round to ceiling using the ceil function.
Rounding toward ceiling is shown in the following figure.

All numbers are rounded
toward positive infinity

Effects of Rounding Mode: Ceiling

------------ {011

inary

4
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N
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Talal
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—¥— Input
...... = Qutput 111

Qutput Real-World Value

------- 110

Output Stored-Integer in B

i
g

Input Real-World Value

Rounding Mode: Convergent

Convergent rounds toward the nearest representable value with ties rounding
toward the nearest even integer. It eliminates bias due to rounding. However,
it introduces the possibility of overflow.



convergent function. Convergent rounding is shown in the following figure.
Effects of Rounding Mode: Convergent

In the MATLAB software, you can perform convergent rounding using the

All numbers are rounded to the
nearest representable number
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In the MATLAB software, you can round to floor using the floor function.

rounded to negative infinity. As a result, a negative cumulative bias is
Rounding toward floor is shown in the following figure.

When you round toward floor, both positive and negative numbers are
introduced in the number.

Rounding Mode: Floor
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All numbers are rounded
toward negative infinity
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Rounding Mode: Nearest

When you round toward nearest, the number is rounded to the nearest
representable value. In the case of a tie, nearest rounds to the closest
representable number in the direction of positive infinity.

In the Fixed-Point Toolbox software, you can round to nearest using the
nearest function. Rounding toward nearest is shown in the following figure.

Ties are rounded to the closest

All numbers are rounded to representable number in the
the nearest representable number direction of positive infinity

Effects of Rounding Mode: Nearest
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Rounding Mode: Round

Round rounds to the closest representable number. In the case of a tie, it
rounds:

¢ Positive numbers to the closest representable number in the direction of
positive infinity.

® Negative numbers to the closest representable number in the direction
of negative infinity.

As a result:

¢ A small negative bias is introduced for negative samples.

® No bias is introduced for samples with evenly distributed positive and
negative values.

¢ A small positive bias is introduced for positive samples.
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In the MATLAB software, you can perform this type of rounding using the
round function. The rounding mode Round is shown in the following figure.

For positive numbers, ties are rounded
All numbers are rounded to the to the closest representable number in

nearest representab]e number the direction of pOSitive |nf|n|ty

Effects of Rounding Mode: Round
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For negative numbers, ties are
rounded to the closest representable
number in the direction of negative
infinity
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Rounding Mode: Simplest

The simplest rounding mode attempts to reduce or eliminate the need for
extra rounding code in your generated code using a combination of techniques,
discussed in the following sections:

® “Optimize Rounding for Casts” on page 3-13

® “Optimize Rounding for High-Level Arithmetic Operations” on page 3-14

® “Optimize Rounding for Intermediate Arithmetic Operations” on page 3-15
In nearly all cases, the simplest rounding mode produces the most efficient
generated code. For a very specialized case of division that meets three specific
criteria, round to floor might be more efficient. These three criteria are:

* Fixed-point/integer signed division

® Denominator is an invariant constant

¢ Denominator is an exact power of two

For this case, set the rounding mode to floor and the Configuration
Parameters > Hardware Implementation > Embedded Hardware >

Signed integer division rounds to parameter to describe the rounding
behavior of your production target.

Optimize Rounding for Casts. The Data Type Conversion block casts a
signal with one data type to another data type. When the block casts the
signal to a data type with a shorter word length than the original data

type, precision is lost and rounding occurs. The simplest rounding mode
automatically chooses the best rounding for these cases based on the following
rules:

* When casting from one integer or fixed-point data type to another, the
simplest mode rounds toward floor.

® When casting from a floating-point data type to an integer or fixed-point
data type, the simplest mode rounds toward zero.
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Optimize Rounding for High-Level Arithmetic Operations. The simplest
rounding mode chooses the best rounding for each high-level arithmetic
operation. For example, consider the operation y = u, X u,/ u, implemented
using a Product block:

-

EJ ex_simplest_roundingl E'@

File Edit View Sirmulation Format Tools Help
b= & » = 100 [Nomal =]
0 ——mx
ul
(2 ——mx —»(1)
uz2 ¥
()
u3
Product
Ready 100% FixedStepDiscrete

As stated in the C standard, the most efficient rounding mode for
multiplication operations is always floor. However, the C standard does
not specify the rounding mode for division in cases where at least one of
the operands is negative. Therefore, the most efficient rounding mode for a
divide operation with signed data types can be floor or zero, depending on
your production target.

The simplest rounding mode:
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® Rounds to floor for all nondivision operations.

® Rounds to zero or floor for division, depending on the setting of the
Configuration Parameters > Hardware Implementation >
Embedded Hardware > Signed integer division rounds to parameter.

To get the most efficient code, you must set the Signed integer division
rounds to parameter to specify whether your production target rounds
to zero or to floor for integer division. Most production targets round

to zero for integer division operations. Note that Simplest rounding
enables “mixed-mode” rounding for such cases, as it rounds to floor for
multiplication and to zero for division.

If the Signed integer division rounds to parameter is set to Undefined,
the simplest rounding mode might not be able to produce the most efficient
code. The simplest mode rounds to zero for division for this case, but it
cannot rely on your production target to perform the rounding, because the
parameter is Undefined. Therefore, you need additional rounding code to
ensure rounding to zero behavior.

Note For signed fixed-point division where the denominator is an
invariant constant power of 2, the simplest rounding mode does not
generate the most efficient code. In this case, set the rounding mode to floor.

Optimize Rounding for Intermediate Arithmetic Operations. For
fixed-point arithmetic with nonzero slope and bias, the simplest rounding
mode also chooses the best rounding for each intermediate arithmetic
operation. For example, consider the operation y = u, / u, implemented using
a Product block, where u, and u, are fixed-point quantities:
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- =

EJ ex_simplest_rounding2 E'@

File Edit View Sirmulation Format Tools Help

b= & » = 100 [Nomal =]

T
o

Product

Ready 100% FixedStepDiscrete

As discussed in “Fixed-Point Numbers” on page 2-3, each fixed-point quantity
1s calculated using its slope, bias, and stored integer. So in this example,

not only is there the high-level divide called for by the block operation, but
intermediate additions and multiplies are performed:

Uy S2Q2 + 32

The simplest rounding mode performs the best rounding for each of these
operations, high-level and intermediate, to produce the most efficient

code. The rules used to select the appropriate rounding for intermediate
arithmetic operations are the same as those described in “Optimize Rounding
for High-Level Arithmetic Operations” on page 3-14. Again, this enables
mixed-mode rounding, with the most common case being round toward floor
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used for additions, subtractions, and multiplies, and round toward zero used
for divides.

Remember that generating the most efficient code using the simplest
rounding mode requires you to set the Configuration Parameters >
Hardware Implementation > Embedded Hardware > Signed integer
division rounds to parameter to describe the rounding behavior of your
production target.

Note For signed fixed-point division where the denominator is an invariant
constant power of 2, the simplest rounding mode does not generate the most
efficient code. In this case, set the rounding mode to floor.

Rounding Mode: Zero

Rounding towards zero is the simplest rounding mode computationally. All
digits beyond the number required are dropped. Rounding towards zero
results in a number whose magnitude is always less than or equal to the
more precise original value. In the MATLAB software, you can round to zero
using the fix function.

Rounding toward zero introduces a cumulative downward bias in the result
for positive numbers and a cumulative upward bias in the result for negative
numbers. That is, all positive numbers are rounded to smaller positive
numbers, while all negative numbers are rounded to smaller negative
numbers. Rounding toward zero is shown in the following figure.
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Positive numbers are rounded
to smaller positive numbers

Effects of Rounding Mode: Zern/
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Example: Rounding to Zero Versus Truncation. Rounding to zero and
truncation or chopping are sometimes thought to mean the same thing.
However, the results produced by rounding to zero and truncation are
different for unsigned and two’s complement numbers. For this reason, the
ambiguous term “truncation” is not used in this guide, and explicit rounding
modes are used instead.

To 1llustrate this point, consider rounding a 5-bit unsigned number to zero
by dropping (truncating) the two least significant bits. For example, the
unsigned number 100.01 = 4.25 is truncated to 100 = 4. Therefore, truncating
an unsigned number is equivalent to rounding to zero or rounding to floor.

Now consider rounding a 5-bit two’s complement number by dropping the
two least significant bits. At first glance, you may think truncating a two’s
complement number is the same as rounding to zero. For example, dropping
the last two digits of -3.75 yields -3.00. However, digital hardware performing
two’s complement arithmetic yields a different result. Specifically, the
number 100.01 = -3.75 truncates to 100 = -4, which is rounding to floor.
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Padding with Trailing Zeros

Padding with trailing zeros involves extending the least significant bit (LSB)
of a number with extra bits. This method involves going from low precision to
higher precision.

For example, suppose two numbers are subtracted from each other. First,
the exponents must be aligned, which typically involves a right shift of the
number with the smaller value. In performing this shift, significant digits
can “fall off” to the right. However, when the appropriate number of extra
bits is appended, the precision of the result is maximized. Consider two 8-bit
fixed-point numbers that are close in value and subtracted from each other:

1.0000000x 27 —~1.1111111x2971,
where ¢ is an integer. To perform this operation, the exponents must be equal:

1.0000000x 27

—0.1111111x2¢
0.0000001x27

If the top number is padded by two zeros and the bottom number is padded
with one zero, then the above equation becomes

1.000000000 x 27

~0.111111110% 29
0.000000010x 27

which produces a more precise result. An example of padding with trailing
zeros in a Simulink model is illustrated in “Digital Controller Realization”
on page 9-52.

Example: Limitations on Precision and Errors
Fixed-point variables have a limited precision because digital systems
represent numbers with a finite number of bits. For example, suppose
you must represent the real-world number 35.375 with a fixed-point
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number. Using the encoding scheme described in “Scaling” on page 2-5, the
representation 1s

V=V=SQ+B=272Q+32,

where V = 35.375.

The two closest approximations to the real-world value are @ = 13 and @ = 14:

~2(13)+32 = 35.25,
~2(14) + 32 = 35.50.

In either case, the absolute error is the same:

IV -v]=0.125=

S _F2F
2

For fixed-point values within the limited range, this represents the worst-case
error if round-to-nearest is used. If other rounding modes are used, the
worst-case error can be twice as large:

[V -v|< F2E.

Example: Maximizing Precision
Precision is limited by slope. To achieve maximum precision, you should

make the slope as small as possible while keeping the range adequately large.
The bias is adjusted in coordination with the slope.

Assume the maximum and minimum real-world values are given by max(V)
and min(V), respectively. These limits might be known based on physical
principles or engineering considerations. To maximize the precision, you must
decide upon a rounding scheme and whether overflows saturate or wrap.

To simplify matters, this example assumes the minimum real-world value
corresponds to the minimum encoded value, and the maximum real-world
value corresponds to the maximum encoded value. Using the encoding scheme
described in “Scaling” on page 2-5, these values are given by

3-21



3 Arithmetic Operations

3-22

max (V) = F2¥ (max(Q)) + B
min (V) = F2F (min(Q))+ B.
Solving for the slope, you get

E max (V)-min(V) ~ max (V)-min(V)
F2== max (Q)-min(Q) B ows _ 1 '

This formula is independent of rounding and overflow issues, and depends
only on the word size, ws.

Net Slope and Net Bias Precision

What are Net Slope and Net Bias?

You can represent a fixed-point number by a general slope and bias encoding
scheme

V~V=8Q+B,

where:

® V is an arbitrarily precise real-world value.

e V is the approximate real-world value.

® (@, the stored value, is an integer that encodes V.
e S = F2E is the slope.

® Bis the bias.

For a cast operation,

SaQa + Ba = Sbe +Bb

or
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_Sp@y ([ By - B,
Qa - Sa +{ S >

a

where:

Sy
e S, is the net slope.
Bb - Ba

o S,  is the net bias.

Detecting Net Slope and Net Bias Precision Issues

Precision issues might occur in the fixed-point constants, net slope and net
bias, due to quantization errors when you convert from floating point to fixed
point. These fixed-point constant precision issues can result in numerical
inaccuracy in your model.

You can configure your model to alert you when fixed-point constant precision
issues occur. For more information, see “How to Detect Net Slope and Net
Bias Precision Issues” on page 3-25. The Simulink Fixed Point software
provides the following information:

¢ The type of precision issue: underflow, overflow, or precision loss.

¢ The original value of the fixed-point constant.

¢ The quantized value of the fixed-point constant.

¢ The error in the value of the fixed-point constant.

® The block that introduced the error.

This information warns you that the outputs from this block are not accurate.
If possible, change the data types in your model to fix the issue.

Fixed-Point Constant Underflow

Fixed-point constant underflow occurs when the Simulink Fixed Point
software encounters a fixed-point constant whose data type does not have
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enough precision to represent the ideal value of the constant, because the
1deal value is too close to zero. Casting the ideal value to the fixed-point data
type causes the value of the fixed-point constant to become zero. Therefore
the value of the fixed-point constant differs from its ideal value.

Fixed-Point Constant Overflow

Fixed-point constant overflow occurs when the Simulink Fixed Point software
converts a fixed-point constant to a data type whose range is not large enough
to accommodate the ideal value of the constant with reasonable precision.
The data type cannot accurately represent the ideal value because the ideal
value is either too large or too small. Casting the ideal value to the fixed-point
data type causes overflow. For example, suppose the ideal value is 200 and
the converted data type is int8. Overflow occurs in this case because the
maximum value that int8 can represent is 127.

The Simulink Fixed Point software reports an overflow error if the quantized
value differs from the ideal value by more than the precision for the data type.
The precision for a data type is approximately equal to the default scaling (for
more information, see “Fixed-Point Data Type Parameters” on page 2-10.)
Therefore, for positive values, the Simulink Fixed Point software treats errors
greater than the slope as overflows. For negative values, it treats errors
greater than or equal to the slope as overflows.

For example, the maximum value that int8 can represent is 127. The
precision for int8 is 1.0. An ideal value of 127.3 quantizes to 127 with

an absolute error of 0.3. Although the ideal value 127.3 is greater than

the maximum representable value for int8, the quantization error is small
relative to the precision of int8. Therefore the Simulink Fixed Point software
does not report an overflow. However, an ideal value of 128.1 does cause

an overflow because the quantization error is 1.1, which is larger than the
precision for int8.

Note Fixed-point constant overflow differs from fixed-point constant
precision loss. Precision loss occurs when the ideal fixed-point constant value
is within the range of the current data type and scaling, but the software
cannot represent this value exactly.
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Fixed-Point Constant Precision Loss

Fixed-point constant precision loss occurs when the Simulink Fixed Point

software converts a fixed-point constant to a data type without enough
precision to represent the exact value of the constant. As a result, the

quantized value differs from the ideal value. For an example of this behavior,

see “Example: Fixed-Point Constant Precision Loss” on page 3-26.

Note Fixed-point constant precision loss differs from fixed-point constant
overflow. Overflow occurs when the range of the parameter data type, that
is, the maximum value that it can represent, is smaller than the ideal value

of the parameter.

How to Detect Net Slope and Net Bias Precision Issues

To receive alerts when fixed-point constant precision issues occur, use these
options available in the Simulink Configuration Parameters dialog box, on
the Diagnostics > Type Conversion pane. Set the parameters to warning

or error so that Simulink alerts you when precision issues occur.

Configuration
Parameter

Specifies

Default

“Detect underflow”

Diagnostic action when
a fixed-point constant
underflow occurs
during simulation

Does not generate a
warning or error.

“Detect overflow”

Diagnostic action when
a fixed-point constant
overflow occurs during
simulation

Does not generate a
warning or error.

“Detect precision loss”

Diagnostic action when
a fixed-point constant
precision loss occurs
during simulation

Does not generate a
warning or error.
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Example: Fixed-Point Constant Precision Loss

This example demonstrates how to detect fixed-point constant precision loss.
The example uses the following model.

-

E_l ex_fixed_point_constant_precision_loss EI@

File Edit Wiew Simulation Format Tools Help

L =zE& » = [100  [Nomal =l

int1G sfoc16_51pldD0D1

Data Type Conversion

Ready 100% T=0.00

FixedStepDiscrete

For the Data Type Conversion block in this model, the:

¢ Input slope, S;; =1
¢ Qutput slope, S, = 1.000001
® Net slope, S;/Sy, = 1/1.000001

When you simulate the model, a net slope quantization error occurs.
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To set up the model and run the simulation:

1 For the Inport block, set the Output data type to int16.

2 For the Data Type Conversion block, set the Output data type to
fixdt (1,16, 1.000001, 0).

3 Set the Diagnostics > Type Conversion > Detect precision loss
configuration parameter to error.

4 In your Simulink model window, select Simulation > Start.

The Simulink Fixed Point software generates an error informing you that

net scaling quantization caused precision loss. The message provides the
following information:

® The block that introduced the error.
¢ The original value of the net slope.
¢ The quantized value of the net slope.

¢ The error in the value of the net slope.
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Limitations on Range
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In this section...

“Introduction” on page 3-28
“Saturation and Wrapping” on page 3-29
“Guard Bits” on page 3-32

“Example: Limitations on Range” on page 3-32

Introduction

Limitations on the range of a fixed-point word occur for the same reason as
limitations on its precision. Namely, fixed-point words have limited size. For
a general discussion of range and precision, refer to “Range and Precision”
on page 2-9.

In binary arithmetic, a processor might need to take an n-bit fixed-point
number and store it in m bits, where m #n. If m < n, the range of the
number has been reduced and an operation can produce an overflow condition.
Some processors identify this condition as Inf or NaN. For other processors,
especially digital signal processors (DSPs), the value saturates or wraps. If m
> n, the range of the number has been extended. Extending the range of a
word requires the inclusion of guard bits, which act to guard against potential
overflow. In both cases, the range depends on the word’s size and scaling.

The Simulink software supports saturation and wrapping for all fixed-point
data types, while guard bits are supported only for fractional data types.
As shown in the following figure, you can select saturation or wrapping for
fixed-point Simulink blocks with the Saturate on integer overflow check
box, and you can specify guard bits with the Output data type parameter.
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Qutput minimum: Qutput maximurn:
|0 |0
36-bit signed fractional data type
with 4 guard bits (total word size — | Output data type: | sfrac(35, 4) =l S |

is 40 bits)

Saturate overflows — ¥ Saturate on integer overflow

x

Gain
’7Elementwise gain (y = K. *u) or matrix gain {y = K*uor y = u™k).

Main  Signal Atibutes | Parameter Attributes |

[T Lock output data type setting against changes by the fixed-paint tools

Integer rounding mode: IF|DDI’ j

J- 0K I Cancel Help | Apply |

Saturation and Wrapping

Saturation and wrapping describe a particular way that some processors deal
with overflow conditions. For example, the ADSP-2100 family of processors
from Analog Devices™ supports either of these modes. If a register has

a saturation mode of operation, then an overflow condition is set to the
maximum positive or negative value allowed. Conversely, if a register has a
wrapping mode of operation, an overflow condition is set to the appropriate
value within the range of the representation.

Example: Saturation and Wrapping

Consider an 8-bit unsigned word with binary-point-only scaling of 2. Suppose
this data type must represent a sine wave that ranges from -4 to 4. For values
between 0 and 4, the word can represent these numbers without regard to
overflow. This is not the case with negative numbers. If overflows saturate,
all negative values are set to zero, which is the smallest number representable
by the data type. The saturation of overflows is shown in the following figure.
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Overflows Saturate

8 T T

6 i

s |
Negative values Negative values
saturate to zero saturate to zero

2 i

O | | | |

0 0.4 0.8 1.2 1.6 2
Time

If overflows wrap, all negative values are set to the appropriate positive value.
The wrapping of overflows is shown in the following figure.
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Overflows Wrap
T T
Negative values Negative values
wrap to positive wrap to positive
values. values.
| | | |
0.4 0.8 1.2 1.6 2
Time

Note For most control applications, saturation is the safer way of dealing
with fixed-point overflow. However, some processor architectures allow
automatic saturation by hardware. If hardware saturation is not available,
then extra software is required, resulting in larger, slower programs. This
cost is justified in some designs—perhaps for safety reasons. Other designs
accept wrapping to obtain the smallest, fastest software.
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Guard Bits

You can eliminate the possibility of overflow by appending the appropriate
number of guard bits to a binary word.

For a two’s complement signed value, the guard bits are filled with either 0’s
or 1’s depending on the value of the most significant bit (MSB). This is called
sign extension. For example, consider a 4-bit two’s complement number with
value 1011. If this number is extended in range to 7 bits with sign extension,
then the number becomes 1111101 and the value remains the same.

Guard bits are supported only for fractional data types. For both signed and
unsigned fractionals, the guard bits lie to the left of the default binary point.

Example: Limitations on Range

Fixed-point variables have a limited range for the same reason they have
limited precision—because digital systems represent numbers with a finite
number of bits. As a general example, consider the case where an integer
is represented as a fixed-point word of size ws. The range for signed and
unsigned words is given by

max (@) - min (@),

where

0 unsigned,

—gws-1 signed,

min (Q) ={

2ws _1 unsigned,
257l _ 1 gigned.

max (Q) ={

Using the general [Slope Bias] encoding scheme described in “Scaling” on
page 2-5, the approximate real-world value has the range

max(V)—min(V),

where
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- B unsigned,
min (V) = g 1
_F2E(gws 1), B signed,

~ F2E (25 _1)4+B unsigned,
max(V) =
F2E(2vs1 _1)4B  signed.

If the real-world value exceeds the limited range of the approximate value,
then the accuracy of the representation can become significantly worse.
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Recommendations for Arithmetic and Scaling

In this section...

“Introduction” on page 3-34
“Addition” on page 3-35
“Accumulation” on page 3-38
“Multiplication” on page 3-38
“Gain” on page 3-40

“Division” on page 3-42

“Summary” on page 3-44

Introduction

The sections that follow describe the relationship between arithmetic
operations and fixed-point scaling, and offer some basic recommendations that
may be appropriate for your fixed-point design. For each arithmetic operation,

® The general [Slope Bias] encoding scheme described in “Scaling” on page
2-5 1s used.

¢ The scaling of the result is automatically selected based on the scaling of
the two inputs. In other words, the scaling is inherited.

e Scaling choices are based on
= Minimizing the number of arithmetic operations of the result
= Maximizing the precision of the result
Additionally, binary-point-only scaling is presented as a special case of the

general encoding scheme.

In embedded systems, the scaling of variables at the hardware interface
(the ADC or DAC) is fixed. However for most other variables, the scaling is
something you can choose to give the best design. When scaling fixed-point
variables, it is important to remember that

® Your scaling choices depend on the particular design you are simulating.
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® There is no best scaling approach. All choices have associated advantages
and disadvantages. It is the goal of this section to expose these advantages
and disadvantages to you.

Addition
Consider the addition of two real-world values:
V, =V, +V..

These values are represented by the general [Slope Bias] encoding scheme
described in “Scaling” on page 2-5:

E.
Vi =FLZ LQi'l'Bi.

In a fixed-point system, the addition of values results in finding the variable

Qy

Fb E -E F, r_g Bb +B, - B,
=—292% " 4+ € 9% + c a
Qa Fa Qb Fa Qc F

a

PR

This formula shows

¢ In general, @, is not computed through a simple addition of @, and Q..

¢ In general, there are two multiplications of a constant and a variable, two
additions, and some additional bit shifting.

Inherited Scaling for Speed

In the process of finding the scaling of the sum, one reasonable goal is to
simplify the calculations. Simplifying the calculations should reduce the
number of operations, thereby increasing execution speed. The following
choices can help to minimize the number of arithmetic operations:

® Set B, = B, + B,. This eliminates one addition.

® Set F,=F, or I, = F,. Either choice eliminates one of the two constant
times variable multiplications.
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The resulting formula is

F
Q, =25%"F.q, + FczEc—Ea Q

C
a
or

F, _ _
Q{l =F_b2Eb EaQb+2Ec EQQC‘

a

These equations appear to be equivalent. However, your choice of rounding
and precision may make one choice stand out over the other. To further
simplify matters, you could choose E, = E_ or E, = E,. This will eliminate
some bit shifting.

Inherited Scaling for Maximum Precision

In the process of finding the scaling of the sum, one reasonable goal is
maximum precision. You can determine the maximum-precision scaling if the
range of the variable is known. “Example: Maximizing Precision” on page
3-21 shows that you can determine the range of a fixed-point operation from
max(V,) and min(V,). For a summation, you can determine the range from

min(Va) = min(Vb)+min(VC),
x(

7e)-

You can now derive the maximum-precision slope:

max(Va) = max(Vb ) +ma

7 ok _ max(Va)—min(Va)
- 2wsa _1

a
_ F, 2% (%% 1) + F,25 (22 ~1)
- 2wsa _1 '

In most cases the input and output word sizes are much greater than one,
and the slope becomes
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Fa 2Ea - Fb 2Eb+wsb7wsa +Fc2Ec+ws;wsa’

which depends only on the size of the input and output words. The
corresponding bias is

B, =min(V, ) - F,2% min(Q,).

The value of the bias depends on whether the inputs and output are signed
or unsigned numbers.

If the inputs and output are all unsigned, then the minimum values for these
variables are all zero and the bias reduces to a particularly simple form:

B, =By +B,.
If the inputs and the output are all signed, then the bias becomes

B, =B, +B, +F,2% (—2“’%*1 +29%71) 1 2% (—2“’Sf1 +9ws1 )
B,~B,+B,.

Binary-Point-Only Scaling
For binary-point-only scaling, finding @, results in this simple expression:

Qa — 2Eb_Ea Qb + 2Ec_Ea Q

c

This scaling choice results in only one addition and some bit shifting. The
avoidance of any multiplications is a big advantage of binary-point-only
scaling.

Note The subtraction of values produces results that are analogous to those
produced by the addition of values.
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Accumulation

The accumulation of values is closely associated with addition:

Va,new = Vafold +Vb'
Finding @ involves one multiplication of a constant and a variable, two

a_new
additions, and some bit shifting:

Fy oE,-E B, -E
= + =27 ey +—-27 e,
Qa_new Qa_old F Qb F

a a

The important difference for fixed-point implementations is that the scaling of
the output is identical to the scaling of the first input.

Binary-Point-Only Scaling

For binary-point-only scaling, finding @ results in this simple expression:

a_new

E -E
Qa_new :Qa_old+2 b aQb'

This scaling option only involves one addition and some bit shifting.

Note The negative accumulation of values produces results that are
analogous to those produced by the accumulation of values.

Multiplication

Consider the multiplication of two real-world values:

V,=V,V..

These values are represented by the general [Slope Bias] encoding scheme
described in “Scaling” on page 2-5:

E.
Vi =F‘L2 LQi'l'Bi.
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In a fixed-point system, the multiplication of values results in finding the
variable @

FF _ F,B _
Q, :%gEﬁEc E.Q,Q, _,_%21'35 E.Q,

a a
L FeBy 4F.-E, Q,+ BbB;‘_ By o-E,

a a

This formula shows

¢ In general, @, is not computed through a simple multiplication of €, and Q..

¢ In general, there is one multiplication of a constant and two variables, two
multiplications of a constant and a variable, three additions, and some
additional bit shifting.

Inherited Scaling for Speed

The number of arithmetic operations can be reduced with these choices:

® Set B, = B,B,. This eliminates one addition operation.

® Set I, = F,F . This simplifies the triple multiplication—certainly the most
difficult part of the equation to implement.

® Set £, =E, + E_. This eliminates some of the bit shifting.

The resulting formula is

B, g . By.g
= +L£277 Q@ + =227 Q..
Q(l QbQC Irc Qb Fb QC

Inherited Scaling for Maximum Precision

You can determine the maximum-precision scaling if the range of the variable
1s known. “Example: Maximizing Precision” on page 3-21 shows that you can
determine the range of a fixed-point operation from

max(Va)
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and

min(Va).

For multiplication, you can determine the range from

min(V,, ) =min (Vzz,Viy, Vi, Ve ),

max (V, ) = max(Vyr, Vg, Vi, Ve ),
where

ViL :min(V )-min( ~c)
Vi =min(V, ) max(V, ),
Vyr = max( ) mm( e

Vun =max(V ) max(V )

Binary-Point-Only Scaling

For binary-point-only scaling, finding @, results in this simple expression:

Qa — 2Eb+Ec_Ea Qch

Gain

Consider the multiplication of a constant and a variable
V, =KV,

where K is a constant called the gain. Since V, results from the multiplication

of a constant and a variable, finding €, is a simplified version of the general
fixed-point multiplication formula:

o | EB 28 .| KBy~ B,
= b —_— .
¢ | F,2F F, 25
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Note that the terms in the parentheses can be calculated offline. Therefore,
there is only one multiplication of a constant and a variable and one addition.

To implement the above equation without changing it to a more complicated
form, the constants need to be encoded using a binary-point-only format. For
each of these constants, the range is the trivial case of only one value. Despite
the trivial range, the binary point formulas for maximum precision are still
valid. The maximum-precision representations are the most useful choices
unless there is an overriding need to avoid any shifting. The encoding of

the constants is

KF, 25

=28xQy
F,2F
KBy~ By |_oE g
. 2F. Y
a

resulting in the formula

Q, =28 QxQp + 257 Qy..
Inherited Scaling for Speed
The number of arithmetic operations can be reduced with these choices:

® Set B, = KB,. This eliminates one constant term.
® Set I, = KF, and E, = E,. This sets the other constant term to unity.

The resulting formula is simply
Qa = Qb

If the number of bits is different, then either handling potential overflows or
performing sign extensions is the only possible operation involved.
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Inherited Scaling for Maximum Precision

The scaling for maximum precision does not need to be different from the
scaling for speed unless the output has fewer bits than the input. If this is the
case, then saturation should be avoided by dividing the slope by 2 for each lost
bit. This prevents saturation but causes rounding to occur.

Division

Division of values is an operation that should be avoided in fixed-point
embedded systems, but it can occur in places. Therefore, consider the division
of two real-world values:

V,=V,/V,.

These values are represented by the general [Slope Bias] encoding scheme
described in “Scaling” on page 2-5:

E.
Vi =F‘LZ LQi+Bi'

In a fixed-point system, the division of values results in finding the variable

Qy

Fb 2Eb Qb + Bb Ba 2_Ea

- E+E E
F.F,2%*%Q, +B,F 2" F,

a

This formula shows

¢ In general, @, is not computed through a simple division of @, by Q..

¢ In general, there are two multiplications of a constant and a variable, two
additions, one division of a variable by a variable, one division of a constant
by a variable, and some additional bit shifting.

Inherited Scaling for Speed

The number of arithmetic operations can be reduced with these choices:

® Set B, = 0. This eliminates one addition operation.
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e If B, =0, then set the fractional slope I, = F,/F.. This eliminates one
constant times variable multiplication.

The resulting formula is

+—

Q, - @ o5,-5-E, , (Bo/F) ok B,
Qc QC

If B, # 0, then no clear recommendation can be made.

Inherited Scaling for Maximum Precision

You can determine the maximum-precision scaling if the range of the variable
1s known. “Example: Maximizing Precision” on page 3-21 shows that you can
determine the range of a fixed-point operation from

max(va)

and

min (Va )
For division, you can determine the range from

min (V, ) =min(Vyz, iy, Var, Vi )

max (V, ) = max(Vyr, Vg, Vi, Vag ),

where for nonzero denominators

c)»
Vun :max(Vb)/max(Vc).
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Binary-Point-Only Scaling

For binary-point-only scaling, finding @, results in this simple expression:

Q{l = & 2Eb _Ec _Ea .
Q.

Note For the last two formulas involving @, a divide by zero and zero
divided by zero are possible. In these cases, the hardware will give some
default behavior but you must make sure that these default responses give
meaningful results for the embedded system.

Summary

From the previous analysis of fixed-point variables scaled within the general
[Slope Bias] encoding scheme, you can conclude

¢ Addition, subtraction, multiplication, and division can be very involved
unless certain choices are made for the biases and slopes.

¢ Binary-point-only scaling guarantees simpler math, but generally sacrifices
some precision.

Note that the previous formulas don’t show the following:

® Constants and variables are represented with a finite number of bits.
e Variables are either signed or unsigned.

¢ Rounding and overflow handling schemes. You must make these decisions
before an actual fixed-point realization is achieved.
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Parameter and Signal Conversions

In this section...

“Introduction” on page 3-45
“Parameter Conversions” on page 3-46

“Signal Conversions” on page 3-47

Introduction

The previous sections of this chapter, together with Chapter 2, “Data Types
and Scaling” describe how data types, scaling, rounding, overflow handling,
and arithmetic operations are incorporated into the Simulink software’s
fixed-point support. With this knowledge, you can define the output of a
fixed-point model by configuring fixed-point blocks to suit your particular
application.

However, to completely understand the results generated by fixed-point
Simulink blocks, you must be aware of these issues:

¢ When numerical block parameters are converted from doubles to Simulink
Fixed Point data types

® When input signals are converted from one Simulink Fixed Point data type
to another (if at all)

e When arithmetic operations on input signals and parameters are performed
For example, suppose a fixed-point Simulink block performs an arithmetic
operation on its input signal and a parameter, and then generates output

having characteristics that are specified by the block. The following diagram
illustrates how these issues are related.
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Fixed-point Simulink block

|Paramete1' value |
N
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Input >|Ope1'ati0n |

l N

Output data type
Output scaling

Rounding
Overflow handling

Output

The sections that follow describe parameter and signal conversions. “Rules
for Arithmetic Operations” on page 3-50 discusses arithmetic operations.

Parameter Conversions

Parameters of fixed-point blocks that accept numerical values are always
converted from double to a fixed-point data type. Parameters can be
converted to the input data type, the output data type, or to a data type
explicitly specified by the block. For example, the Discrete FIR Filter block
converts its Initial states parameter to the input data type, and converts its
Numerator coefficient parameter to a data type you explicitly specify via
the block dialog box.

Parameters are always converted before any arithmetic operations are
performed. Additionally, parameters are always converted offline using
round-to-nearest and saturation. Offline conversions are discussed below.
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Note Because parameters of fixed-point blocks begin as double, they are
never precise to more than 53 bits. Therefore, if the output of your fixed-point
block is longer than 53 bits, your result might be less precise than you
anticipated.

Offline Conversions

An offline conversion is a conversion performed by your development platform
(for example, the processor on your PC), and not by the fixed-point processor
you are targeting. For example, suppose you are using a PC to develop a
program to run on a fixed-point processor, and you need the fixed-point
processor to compute

y=(a—bJu=Cu
c

over and over again. If a, b, and ¢ are constant parameters, it is inefficient
for the fixed-point processor to compute ab/c every time. Instead, the PC’s
processor should compute ab/c offline one time, and the fixed-point processor
computes only Cu. This eliminates two costly fixed-point arithmetic
operations.

Signal Conversions

Consider the conversion of a real-world value from one fixed-point data type
to another. Ideally, the values before and after the conversion are equal.

V, =V,

where V, is the input value and V, is the output value. To see how the
conversion is implemented, the two ideal values are replaced by the general
[Slope Bias] encoding scheme described in “Scaling” on page 2-5:

E.
‘/i :F‘l2 lQi+Bi'

Solving for the output data type’s stored integer value, €, is obtained:
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F, oE,-E B,-B, ,E
_ b 9B,-E, o , b~ Da 5-E,
Q, F, Q@ 7

a
=F2bEqQ +B

net >

where F_ is the adjusted fractional slope and B, , is the net bias. The offline
conversions and online conversions and operations are discussed below.

Offline Conversions

Both F, and B, , are computed offline using round-to-nearest and saturation.
B, is then stored using the output data type and F| is stored using an
automatically selected data type.

Online Conversions and Operations
The remaining conversions and operations are performed online by the

fixed-point processor, and depend on the slopes and biases for the input and
output data types. The conversions and operations are given by these steps:
1 The initial value for @, is given by the net bias, B,

Qy = Bes-
2 The input integer value, @,, is multiplied by the adjusted slope, F.:

QRawProduct =F, sz'

3 The result of step 2 is converted to the modified output data type where the
slope is one and bias is zero:

QTemp = convert(QRawProduct )

This conversion includes any necessary bit shifting, rounding, or overflow
handling.

4 The summation operation is performed:

Q, = QTemp +Qy-
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This summation includes any necessary overflow handling.

Streamlining Simulations and Generated Code

Note that the maximum number of conversions and operations is performed
when the slopes and biases of the input signal and output signal differ

(are mismatched). If the scaling of these signals is identical (matched), the
number of operations is reduced from the worst (most inefficient) case. For
example, when an input has the same fractional slope and bias as the output,
only step 3 is required:

Q, = convert(Q).

Exclusive use of binary-point-only scaling for both input signals and output
signals 1s a common way to eliminate mismatched slopes and biases, and
results in the most efficient simulations and generated code.
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In this section...

“Introduction” on page 3-50
“Computational Units” on page 3-50
“Addition and Subtraction” on page 3-51
“Multiplication” on page 3-56

“Division” on page 3-65

“Shifts” on page 3-68

Introduction

Fixed-point arithmetic refers to how signed or unsigned binary words are
operated on. The simplicity of fixed-point arithmetic functions such as
addition and subtraction allows for cost-effective hardware implementations.

The sections that follow describe the rules that the Simulink software follows
when arithmetic operations are performed on inputs and parameters. These
rules are organized into four groups based on the operations involved:
addition and subtraction, multiplication, division, and shifts. For each

of these four groups, the rules for performing the specified operation are
presented with an example using the rules.

Note For information about calculations using Fixed-Point Toolbox software,
see the Fixed-Point Toolbox User’s Guide.

Computational Units

The core architecture of many processors contains several computational
units including arithmetic logic units (ALUs), multiply and accumulate units
(MACs), and shifters. These computational units process the binary data
directly and provide support for arithmetic computations of varying precision.
The ALU performs a standard set of arithmetic and logic operations as well as
division. The MAC performs multiply, multiply/add, and multiply/subtract
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operations. The shifter performs logical and arithmetic shifts, normalization,
denormalization, and other operations.

Addition and Subtraction

Addition is the most common arithmetic operation a processor performs.
When two n-bit numbers are added together, it is always possible to produce a
result with n + 1 nonzero digits due to a carry from the leftmost digit. For
two’s complement addition of two numbers, there are three cases to consider:

¢ If both numbers are positive and the result of their addition has a sign bit
of 1, then overflow has occurred; otherwise the result is correct.

¢ If both numbers are negative and the sign of the result is 0, then overflow
has occurred; otherwise the result is correct.

e If the numbers are of unlike sign, overflow cannot occur and the result is
always correct.

Fixed-Point Simulink Blocks Summation Process

Consider the summation of two numbers. Ideally, the real-world values obey
the equation

V, =%V, +V,,

where V, and V_ are the input values and V, is the output value. To see how
the summation is actually implemented, the three ideal values should be
replaced by the general [Slope Bias] encoding scheme described in “Scaling”
on page 2-5:

E.
‘/l' ZF‘LZ LQi+Bi‘

The equation in “Addition” on page 3-35 gives the solution of the resulting
equation for the stored integer, @,. Using shorthand notation, that equation
becomes

Qq = tFy 2" 5, F, 2575 Q

c

+B

net>
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where I, and I, are the adjusted fractional slopes and B, , is the net bias.
The offline conversions and online conversions and operations are discussed
below.

Offline Conversions. F,, F,, and B, , are computed offline using
round-to-nearest and saturation. Furthermore, B, , is stored using the output

data type.
Online Conversions and Operations. The remaining operations are
performed online by the fixed-point processor, and depend on the slopes and
biases for the input and output data types. The worst (most inefficient)
case occurs when the slopes and biases are mismatched. The worst-case
conversions and operations are given by these steps:
1 The initial value for @, is given by the net bias, B, ,;:

Qa = Be-
2 The first input integer value, €,, is multiplied by the adjusted slope, F;:

QRawProduct =F, stb'

3 The previous product is converted to the modified output data type where
the slope is one and the bias is zero:

QTemp = Convert(QRawProduct )

This conversion includes any necessary bit shifting, rounding, or overflow
handling.

4 The summation operation is performed:
Q, =@, £ QTemp'

This summation includes any necessary overflow handling.

5 Steps 2 to 4 are repeated for every number to be summed.
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It is important to note that bit shifting, rounding, and overflow handling are
applied to the intermediate steps (3 and 4) and not to the overall sum.

Streamlining Simulations and Generated Code

If the scaling of the input and output signals is matched, the number of
summation operations is reduced from the worst (most inefficient) case. For
example, when an input has the same fractional slope as the output, step 2
reduces to multiplication by one and can be eliminated. Trivial steps in the
summation process are eliminated for both simulation and code generation.
Exclusive use of binary-point-only scaling for both input signals and output
signals is a common way to eliminate mismatched slopes and biases, and
results in the most efficient simulations and generated code.

Example: The Summation Process

Suppose you want to sum three numbers. Each of these numbers is
represented by an 8-bit word, and each has a different binary-point-only
scaling. Additionally, the output is restricted to an 8-bit word with
binary-point-only scaling of 23,

The summation is shown in the following model for the input values 19.875,
5.4375, and 4.84375.
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Applying the rules from the previous section, the sum follows these steps:

1 Because the biases are matched, the initial value of @, is trivial:

., =00000.000.

2 The first number to be summed (19.875) has a fractional slope that matches
the output fractional slope. Furthermore, the binary points and storage
types are identical, so the conversion is trivial:

), =10011.111,
QTemp = Q.
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3 The summation operation is performed:
Qu = Qy + Qrepmp =10011.111.

4 The second number to be summed (5.4375) has a fractional slope that
matches the output fractional slope, so a slope adjustment is not needed.
The storage data types also match, but the difference in binary points
requires that both the bits and the binary point be shifted one place to
the right:

. =0101.0111,

Qremp = convert(Q,)
@fump = 00101.011.

Note that a loss in precision of one bit occurs, with the resulting value of
QTemp determined by the rounding mode. For this example, round-to-floor
is used. Overflow cannot occur in this case because the bits and binary
point are both shifted to the right.

5 The summation operation is performed:

Qy =Q, + QTemp
10011.111

_+00101.011
~11001.010 = 25.250.

Note that overflow did not occur, but it is possible for this operation.

6 The third number to be summed (4.84375) has a fractional slope that
matches the output fractional slope, so a slope adjustment is not needed.
The storage data types also match, but the difference in binary points
requires that both the bits and the binary point be shifted two places
to the right:
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®,; =100.11011,

Qremp = convert(Qy)
@ = 00100.110.

Note that a loss in precision of two bit occurs, with the resulting value of
Qr,,,, determined by the rounding mode. For this example, round-to-floor
is used. Overflow cannot occur in this case because the bits and binary
point are both shifted to the right.

7 The summation operation is performed:

Qy =Q, + QTemp
11001.010

_+00100.110
~11110.000 = 30.000.

Note that overflow did not occur, but it is possible for this operation.
As shown here, the result of step 7 differs from the ideal sum:

10011.111

0101.0111
_ +100.11011
~11110.001=30.125.

Blocks that perform addition and subtraction include the Sum, Gain, and
Discrete FIR Filter blocks.

Multiplication

The multiplication of an n-bit binary number with an m-bit binary number
results in a product that is up to m + n bits in length for both signed and
unsigned words. Most processors perform n-bit by n-bit multiplication and
produce a 2n-bit result (double bits) assuming there is no overflow condition.
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Fixed-Point Simulink Blocks Multiplication Process

Consider the multiplication of two numbers. Ideally, the real-world values
obey the equation

V, =V, V..

where V, and V_ are the input values and V is the output value. To see how
the multiplication is actually implemented, the three ideal values should be
replaced by the general [Slope Bias] encoding scheme described in “Scaling”
on page 2-5:

E.
‘/i :‘F‘l2 LQi+Bi‘

The solution of the resulting equation for the output stored integer, @, is
given below:

B F _ F.B _
Q, _2b%c o +E K, @Q. +%2Eb E, Q

F,

a a
F.By E-E
+C—2 c a
Q. 7

a

+BoBe=Bagor,

a

Multiplication with Nonzero Biases and Mismatched Fractional
Slopes. The worst-case implementation of the above equation occurs when
the slopes and biases of the input and output signals are mismatched. In
such cases, several low-level integer operations are required to carry out the
high-level multiplication (or division). Implementation choices made about
these low-level computations can affect the computational efficiency, rounding
errors, and overflow.

In Simulink blocks, the actual multiplication or division operation is always
performed on fixed-point variables that have zero biases. If an input has
nonzero bias, it is converted to a representation that has binary-point-only
scaling before the operation. If the result is to have nonzero bias, the operation
is first performed with temporary variables that have binary-point-only
scaling. The result is then converted to the data type and scaling of the final
output.
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If both the inputs and the output have nonzero biases, then the operation is
broken down as follows:

VlTemp =V,
V2Temp =Vy,
V3Temp = VlTempV2Temp’
Vs = V3Temp’
where

E emj

VlTemp =27 QlTemp,
E em

V2Temp =27 pQQTemp’

E em;
V3Temp =27 pQSTemp'

These equations show that the temporary variables have binary-point-only
scaling. However, the equations do not indicate the signedness, word lengths,
or values of the fixed exponent of these variables. The Simulink software
assigns these properties to the temporary variables based on the following
goals:

e Represent the original value without overflow.

The data type and scaling of the original value define a maximum and
minimum real-world value:

E
Vitax = F2 QMaxInteger +B,

_ E
VMin =F2 QMinInteger +B.

The data type and scaling of the temporary value must be able to represent
this range without overflow. Precision loss is possible, but overflow is never
allowed.

e Use a data type that leads to efficient operations.

This goal is relative to the target that you will use for production
deployment of your design. For example, suppose that you will implement
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the design on a 16-bit fixed-point processor that provides a 32-bit long,
16-bit int, and 8-bit short or char. For such a target, preserving efficiency
means that no more than 32 bits are used, and the smaller sizes of 8 or 16
bits are used if they are sufficient to maintain precision.

e Maintain precision.

Ideally, every possible value defined by the original data type and scaling
1s represented perfectly by the temporary variable. However, this can
require more bits than is efficient. Bits are discarded, resulting in a loss of
precision, to the extent required to preserve efficiency.

For example, consider the following, assuming a 16-bit microprocessor target:

Voriginal = Qoriginal +-43-25,
where Qi 18 an 8-bit, unsigned data type. For this data type,

QMaxInteger = 225,
QMinInteger =0,

SO

Vitax = 211.75,
Visin = —43.25.

The minimum possible value is negative, so the temporary variable must be a
signed integer data type. The original variable has a slope of 1, but the bias is
expressed with greater precision with two digits after the binary point. To
get full precision, the fixed exponent of the temporary variable has to be -2

or less. The Simulink software selects the least possible precision, which is
generally the most efficient, unless overflow issues arise. For a scaling of 22,
selecting signed 16-bit or signed 32-bit avoids overflow. For efficiency, the
Simulink software selects the smaller choice of 16 bits. If the original variable
is an input, then the equations to convert to the temporary variable are
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uint8_T  Qoriginais
uint1l6_ T  Qpepp»

QTemp = ((uinth_T) QOriginal 0 2) -173.

Multiplication with Zero Biases and Mismatched Fractional Slopes.
When the biases are zero and the fractional slopes are mismatched, the
implementation reduces to

FF _
Q, =%2Eb+Ec E, Q..

a

Offline Conversions
The quantity

F F
F _b"c
Net F

a

is calculated offline using round-to-nearest and saturation. Fy,, is stored
using a fixed-point data type of the form

E
2 Net QNet R

where E,,, and @, are selected automatically to best represent Fy,,.
Online Conversions and Operations

1 The integer values @, and @, are multiplied:

QRawProduct = QbQC'

To maintain the full precision of the product, the binary point of Q... product
is given by the sum of the binary points of €, and Q..

2 The previous product is converted to the output data type:
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QTemp = convert(QRawProduct )

This conversion includes any necessary bit shifting, rounding, or overflow
handling. “Signal Conversions” on page 3-47 discusses conversions.

3 The multiplication
Q2 RawProduct = @Temp@Net
is performed.
4 The previous product is converted to the output data type:

Qa = convert (Q2RawProduct )

This conversion includes any necessary bit shifting, rounding, or overflow
handling. “Signal Conversions” on page 3-47 discusses conversions.

5 Steps 1 through 4 are repeated for each additional number to be multiplied.

Multiplication with Zero Biases and Matching Fractional Slopes.
When the biases are zero and the fractional slopes match, the implementation

reduces to

Qu =2 Q..

Offline Conversions

No offline conversions are performed.
Online Conversions and Operations
1 The integer values @, and @, are multiplied:

QRawProduct = QbQC'

To maintain the full precision of the product, the binary point of Q... product
is given by the sum of the binary points of €, and Q..
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2 The previous product is converted to the output data type:

Qa = convert (QRawProduct )

This conversion includes any necessary bit shifting, rounding, or overflow
handling. “Signal Conversions” on page 3-47 discusses conversions.

3 Steps 1 and 2 are repeated for each additional number to be multiplied.

Example: The Multiplication Process

Suppose you want to multiply three numbers. Each of these numbers is
represented by a 5-bit word, and each has a different binary-point-only
scaling. Additionally, the output is restricted to a 10-bit word with
binary-point-only scaling of 2. The multiplication is shown in the following
model for the input values 5.75, 2.375, and 1.8125.
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=N [R5

p

EJ ex_multl
File Edit View Sirmulation Format Tools Help
O = EHS » |'|D.D |N|:|rrnal ﬂ d
575 uficch_EnZ
Constant
——
Qb
5 a7E uficeh_En3 _ ” ufice1d_End double double E
W L
a -
Constant1 Data Type Conversion Display
fi xd
oras Joaens [ad'|
Product
Constant2
Ready 100% T=0.00 FixedStepDiscrete
Applying the rules from the previous section, the multiplication follows these

steps:

101.11
x10.011
101.11-273
101.11-272

+101.11-21
01101.10101 = 13.65625.

QRawProduct =

1 The first two numbers (5.75 and 2.375) are multiplied:
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Note that the binary point of the product is given by the sum of the binary
points of the multiplied numbers.

2 The result of step 1 is converted to the output data type:

QTemp = Convert(QRawProduct)
=001101.1010 =13.6250.

“Signal Conversions” on page 3-47 discusses conversions. Note that a loss in
precision of one bit occurs, with the resulting value of @y, determined by
the rounding mode. For this example, round-to-floor is used. Furthermore,
overflow did not occur but is possible for this operation.

3 The result of step 2 and the third number (1.8125) are multiplied:

QRawProduct = 01101.1010
x1.1101
1101.1010-27%

1101.1010-272
1101.1010-271

+1101.1010-2°
0011000.10110010 = 24.6953125.

Note that the binary point of the product is given by the sum of the binary
points of the multiplied numbers.

4 The product is converted to the output data type:

Qa = convert (QRawProduct)
=011000.1011 =24.6875.

“Signal Conversions” on page 3-47 discusses conversions. Note that a

loss 1n precision of 4 bits occurred, with the resulting value of Qy,,,
determined by the rounding mode. For this example, round-to-floor 1s used.
Furthermore, overflow did not occur but is possible for this operation.
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Blocks that perform multiplication include the Product, Discrete FIR Filter,
and Gain blocks.

Division
This section discusses the division of quantities with zero bias.

Note When any input to a division calculation has nonzero bias, the
operations performed exactly match those for multiplication described in
“Multiplication with Nonzero Biases and Mismatched Fractional Slopes” on
page 3-57.

Fixed-Point Simulink Blocks Division Process

Consider the division of two numbers. Ideally, the real-world values obey
the equation

Va =Vb/Vc’

where V, and V_ are the input values and V_ is the output value. To see
how the division is actually implemented, the three ideal values should be
replaced by the general [Slope Bias] encoding scheme described in “Scaling”
on page 2-5:

E.
‘/l' ZF‘LZ LQI:+BL"

For the case where the slope adjustment factors are one and the biases are
zero for all signals, the solution of the resulting equation for the output stored
integer, @,, is given by the following equation:

Q, =257 (Q,/Q. ).

This equation involves an integer division and some bit shifts. If E, > E—E ,
then any bit shifts are to the right and the implementation is simple. However,
if E, < E,—E , then the bit shifts are to the left and the implementation can be
more complicated. The essential issue is that the output has more precision
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than the integer division provides. To get full precision, a fractional division
1s needed. The C programming language provides access to integer division
only for fixed-point data types. Depending on the size of the numerator,

you can obtain some of the fractional bits by performing a shift prior to the
integer division. In the worst case, it might be necessary to resort to repeated
subtractions in software.

In general, division of values is an operation that should be avoided in
fixed-point embedded systems. Division where the output has more precision
than the integer division (i.e., £, < E,—E ) should be used with even greater
reluctance.

Example: The Division Process

Suppose you want to divide two numbers. Each of these numbers is
represented by an 8-bit word, and each has a binary-point-only scaling of 2.
Additionally, the output is restricted to an 8-bit word with binary-point-only
scaling of 24

The division of 9.1875 by 1.5000 is shown in the following model.
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W e divl E=N Eol ===
File Edit View Sirmulation Format Tools Help
O = EHS 2 |'|D.D |N|:|rrnal ﬂ d
g 1875 uficel_Emd
Constant
I
Ob
ufieE_End double double E135
Qs L
Data Type Conversion Display
— ™+
D
15 uficel_Emd
Product
Constant1
Ready 100% T=0.00 FixedStepDiscrete

For this example,

Qa — 2—4—(—4)—(—4) (Qb /Qc)
=24 (Qb /@, )

Assuming a large data type was available, this could be implemented as

—

2'Q,)
Qc ’

Qa =
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where the numerator uses the larger data type. If a larger data type was not
available, integer division combined with four repeated subtractions would
be used. Both approaches produce the same result, with the former being
more efficient.

Shifts

Nearly all microprocessors and digital signal processors support well-defined
bit-shift (or simply shift) operations for integers. For example, consider the
8-bit unsigned integer 00110101. The results of a 2-bit shift to the left and a
2-bit shift to the right are shown in the following table.

Shift Operation Binary Value Decimal Value
No shift (original number) 00110101 53

Shift left by 2 bits 11010100 212

Shift right by 2 bits 00001101 13

You can perform a shift using the Simulink Shift Arithmetic block. Use
this block to perform a bit shift, a binary point shift, or both. See the
documentation for the Shift Arithmetic block in the Simulink Reference for
more information on performing bit and binary point shifts.

Shifting Bits to the Right

The special case of shifting bits to the right requires consideration of the
treatment of the leftmost bit, which can contain sign information. A shift to
the right can be classified either as a logical shift right or an arithmetic shift
right. For a logical shift right, a 0 is incorporated into the most significant
bit for each bit shift. For an arithmetic shift right, the most significant bit
is recycled for each bit shift.

The Shift Arithmetic block performs an arithmetic shift right and, therefore,
recycles the most significant bit for each bit shift right. For example, given
the fixed-point number 11001.011 (-6.625), a bit shift two places to the right
with the binary point unmoved yields the number 11110.010 (-1.75), as shown
in the model below:
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p

B = shift_arith

File Edit

View Simulation Format Tecols Help

L&

=N [R5

» 100 |Nomal |

-6.625

Constant

Ready

sfied_End

sficcd En3 double
Qy=0us»2 o gl Convert et g

Shift Data Type Conversion Display
Arithmetic
100% T=0.00 FixedStepDiscrete

To perform a logical shift right on a signed number using the Shift Arithmetic
block, use the Data Type Conversion block to cast the number as an unsigned
number of equivalent length and scaling, as shown in the following model.
The model shows that the fixed-point signed number 11001.001 (-6.625)
becomes 00110.010 (6.25).
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i

W e shift_arith_2 E=E5 Ol =<5
File Edit View Sirmulation Format Tools Help
=== [ 2 |'ID.D |N-:|n'r|al j &
& o | STHE_ERD Comvest uficd_End Qy=Quss2 ufixd_En2 Comvet double
f.825 C Qy =0y 2 (= EEE—
Constant Diata Type Conversion Shift Diata Type Conversion Display
Arithmetic

Ready 100% T=0.00 FixedStepDiscrete
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Example: Conversions and Arithmetic Operations

This example uses the Discrete FIR Filter block to illustrate when parameters
are converted from a double to a fixed-point number, when the input data
type is converted to the output data type, and when the rules for addition,
subtraction, and multiplication are applied. For details about conversions and
operations, refer to “Parameter and Signal Conversions” on page 3-45 and
“Rules for Arithmetic Operations” on page 3-50.

Note If a block can perform all four arithmetic operations, then the rules for
multiplication and division are applied first. The Discrete FIR Filter block
is an example of this.

Suppose you configure the Discrete FIR Filter block for two outputs, where
the first output is given by

y1 (R)=13 u(k)+11- u(k-1) -7 u(k-2),

and the second output is given by

vy (B)=6-u(k)-5-u(k-1).

Additionally, the initial values of u(k—1) and u(k—2) are given by 0.8 and 1.1,
respectively, and all inputs, parameters, and outputs have binary-point-only
scaling.

To configure the Discrete FIR Filter block for this situation, on the Main pane

of its dialog box, you must specify the Coefficients parameter as [13 11 -7;
6 -5 0] and the Initial states parameter as [0.8 1.1], as shown here.
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I

E Function Block Parameters: Discrete FIR Filter @
Discrete FIR Filter

Independently filter each channel of the input over time using an FIR filter. You can specify filter coefficients using
either tunable dialog parameters or separate input ports, which are useful for time-varying coefficients.

A DSP System Toolbox license is required to use a filter structure other than Direct Form.

Main Data Types

Coefficient source: [Dialog parameters 'l
Filter structure: [Direct form 'l
Coefficients: [1311-7; 68-50]

Input processing: [Elements as channels (sample based) 'l
Initial states: [0.81.1]

Sample time (-1 for inherited): -1

oK ][ Cancel H Help ] Apply

Similarly, configure the options on the Data Types pane of the block dialog
box to appear as follows:
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I

E Function Block Parameters: Discrete FIR Filter @
Discrete FIR Filter

Independently filter each channel of the input over time using an FIR filter. You can specify filter coefficients using
either tunable dialog parameters or separate input ports, which are useful for time-varying coefficients.

A DSP System Toolbox license is required to use a filter structure other than Direct Form.

Data Types

Floating-point inheritance takes precedence over the settings in the "Data Type" column below. When the block input
is floating point, all block data types match the input.

Data Type Assistant Minimum Maximum
Coefficients: fixedt(1,16) - [ [
Product output: fixdt(1,16,10) -
Accumulator: Inherit: Inherit via internal rule -
Output: Inherit: Same as accumulator - [] [

[ Lock data type settings against changes by the fixed-point tools

Integer rounding mode: Floor ']

[T] saturate on integer overflow

[ oK H Cancel H Help ] Apply

The Discrete FIR Filter block performs parameter conversions and block
operations in the following order:

1 The Coefficients parameter is converted offline from doubles to the
Coefficients data type using round-to-nearest and saturation.

The Initial states parameter is converted offline from doubles to the input
data type using round-to-nearest and saturation.

2 The coefficients and inputs are multiplied together for the initial time step
for both outputs. For y,(0), the operations 13 u(0), 11-0.8, and —7 1.1 are
performed, while for y,(0), the operations 6 u(0) and —5 ‘0.8 are performed.
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The results of these operations are stored as Product output.

3 The sum is carried out in Accumulator. The final summation result is
then converted to Output.

4 Steps 2 and 3 repeat for subsequent time steps.
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Overview

In this section...

“Introduction” on page 4-2

“Realizations and Data Types” on page 4-2

Introduction

This chapter investigates how you can realize fixed-point digital filters using
Simulink blocks and the Simulink Fixed Point software.

The Simulink Fixed Point software addresses the needs of the control system,
signal processing, and other fields where algorithms are implemented on
fixed-point hardware. In signal processing, a digital filter is a computational
algorithm that converts a sequence of input numbers to a sequence of
output numbers. The algorithm is designed such that the output signal
meets frequency-domain or time-domain constraints (desirable frequency
components are passed, undesirable components are rejected).

In general terms, a discrete transfer function controller is a form of a digital
filter. However, a digital controller can contain nonlinear functions such as
lookup tables in addition to a discrete transfer function. This guide uses the
term digital filter when referring to discrete transfer functions.

Note To design and implement a wide variety of floating-point and
fixed-point filters suitable for use in signal processing applications and for
deployment on DSP chips, use the DSP System Toolbox software.

Realizations and Data Types

In an ideal world, where numbers, calculations, and storage of states have
infinite precision and range, there are virtually an infinite number of
realizations for the same system. In theory, these realizations are all identical.

In the more realistic world of double-precision numbers, calculations, and

storage of states, small nonlinearities are introduced by the finite precision
and range of floating-point data types. Therefore, each realization of a given
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system produces different results. In most cases however, these differences
are small.

In the world of fixed-point numbers, where precision and range are limited,
the differences in the realization results can be very large. Therefore, you
must carefully select the data type, word size, and scaling for each realization
element such that results are accurately represented. To assist you with this
selection, design rules for modeling dynamic systems with fixed-point math
are provided in “Targeting an Embedded Processor” on page 4-4.
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Targeting an Embedded Processor

4-4

In this section...

“Introduction” on page 4-4
“Size Assumptions” on page 4-4

“Operation Assumptions” on page 4-4

“Design Rules” on page 4-5

Introduction

The sections that follow describe issues that often arise when targeting a
fixed-point design for use on an embedded processor, such as some general
assumptions about integer sizes and operations available on embedded
processors. These assumptions lead to design issues and design rules that
might be useful for your specific fixed-point design.

Size Assumptions

Embedded processors are typically characterized by a particular bit size. For
example, the terms “8-bit micro,” “32-bit micro,” or “16-bit DSP” are common.
It is generally safe to assume that the processor is predominantly geared to
processing integers of the specified bit size. Integers of the specified bit size
are referred to as the base data type. Additionally, the processor typically
provides some support for integers that are twice as wide as the base data
type. Integers consisting of double bits are referred to as the accumulator
data type. For example a 16-bit micro has a 16-bit base data type and a 32-bit
accumulator data type.

Although other data types may be supported by the embedded processor, this
section describes only the base and accumulator data types.

Operation Assumptions

The embedded processor operations discussed in this section are limited to the
needs of a basic simulation diagram. Basic simulations use multiplication,
addition, subtraction, and delays. Fixed-point models also need shifts to

do scaling conversions. For all these operations, the embedded processor
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should have native instructions that allow the base data type as inputs.
For accumulator-type inputs, the processor typically supports addition,
subtraction, and delay (storage/retrieval from memory), but not multiplication.

Multiplication is typically not supported for accumulator-type inputs because
of complexity and size issues. A difficulty with multiplication is that the
output needs to be twice as big as the inputs for full precision. For example,
multiplying two 16-bit numbers requires a 32-bit output for full precision.
The need to handle the outputs from a multiplication operation is one of the
reasons embedded processors include accumulator-type support. However, if
multiplication of accumulator-type inputs is also supported, then there is a
need to support a data type that is twice as big as the accumulator type. To
restrict this additional complexity, multiplication is typically not supported
for inputs of the accumulator type.

Design Rules

The important design rules that you should be aware of when modeling
dynamic systems with fixed-point math follow.

Design Rule 1: Only Multiply Base Data Types

It is best to multiply only inputs of the base data type. Embedded processors
typically provide an instruction for the multiplication of base-type inputs, but
not for the multiplication of accumulator-type inputs. If necessary, you can
combine several instructions to handle multiplication of accumulator-type
inputs. However, this can lead to large, slow embedded code.

You can insert blocks to convert inputs from the accumulator type to the base
type prior to Product or Gain blocks, if necessary.

Design Rule 2: Delays Should Use the Base Data Type

There are two general reasons why a Unit Delay should use only base-type
numbers:

¢ The Unit Delay essentially stores a variable’s value to RAM and, one time
step later, retrieves that value from RAM. Because the value must be in
memory from one time step to the next, the RAM must be exclusively
dedicated to the variable and can’t be shared or used for another purpose.
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Using accumulator-type numbers instead of the base data type doubles
the RAM requirements, which can significantly increase the cost of the
embedded system.

® The Unit Delay typically feeds into a Gain block. The multiplication design
rule requires that the input (the unit delay signal) use the base data type.

Design Rule 3: Temporary Variables Can Use the Accumulator
Data Type

Except for unit delay signals, most signals are not needed from one time step
to the next. This means that the signal values can be temporarily stored in
shared and reused memory. This shared and reused memory can be RAM or
it can simply be registers in the CPU. In either case, storing the value as

an accumulator data type is not much more costly than storing it as a base
data type.

Design Rule 4: Summation Can Use the Accumulator Data Type

Addition and subtraction can use the accumulator data type if there is
justification. The typical justification is reducing the buildup of errors due to
roundoff or overflow.

For example, a common filter operation is a weighted sum of several variables.
Multiplying a variable by a weight naturally produces a product of the
accumulator type. Before summing, each product can be converted back to
the base data type. This approach introduces round-off error into each part
of the sum.

Alternatively, the products can be summed using the accumulator data type,
and the final sum can be converted to the base data type. Round-off error is

introduced in just one point and the precision is generally better. The cost of
doing an addition or subtraction using accumulator-type numbers is slightly
more expensive, but if there is justification, it is usually worth the cost.
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Canonical Forms

In this section...

“Introduction” on page 4-7
“Direct Form II” on page 4-8
“Series Cascade Form” on page 4-12

“Parallel Form” on page 4-14

Introduction

The Simulink Fixed Point software does not attempt to standardize on

one particular fixed-point digital filter design method. For example, you

can produce a design in continuous time and then obtain an “equivalent”
discrete-time digital filter using one of many transformation methods.
Alternatively, you can design digital filters directly in discrete time. After you
obtain a digital filter, it can be realized for fixed-point hardware using any
number of canonical forms. Typical canonical forms are the direct form, series
form, and parallel form, each of which is outlined in the sections that follow.

For a given digital filter, the canonical forms describe a set of fundamental
operations for the processor. Because there are an infinite number of ways
to realize a given digital filter, you must make the best realization on a
per-system basis. The canonical forms presented in this chapter optimize the
implementation with respect to some factor, such as minimum number of
delay elements.

In general, when choosing a realization method, you must take these factors
into consideration:
e Cost
The cost of the realization might rely on minimal code and data size.
¢ Timing constraints

Real-time systems must complete their compute cycle within a fixed
amount of time. Some realizations might yield faster execution speed on
different processors.
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® Qutput signal quality

The limited range and precision of the binary words used to represent
real-world numbers will introduce errors. Some realizations are more
sensitive to these errors than others.

The Simulink Fixed Point software allows you to evaluate various digital filter
realization methods in a simulation environment. Following the development
cycle outlined in “The Development Cycle” on page 1-18, you can fine-tune
the realizations with the goal of reducing the cost (code and data size) or
increasing signal quality. After you have achieved the desired performance,
you can use the Simulink Coder product to generate rapid prototyping C code
and evaluate its performance with respect to your system’s real-time timing
constraints. You can then modify the model based upon feedback from the
rapid prototyping system.

The presentation of the various realization structures takes into account that
a summing junction is a fundamental operator, thus you may find that the
structures presented here look different from those in the fixed-point filter
design literature. For each realization form, an example is provided using the
transfer function shown here:

_1+22:1 418522405273
1-0.52140.8422 +0.09273
(1+05:)(1+1.72 1 +272)
(140.1271)(1-0.6271 +0.922)
3.4639  -1.0916+3.00862"
1401271 1-0.6271+0.9272

Hex (Z)

=5.5656 —

Direct Form Il

In general, a direct form realization refers to a structure where the coefficients
of the transfer function appear directly as Gain blocks. The direct form

II realization method is presented as using the minimal number of delay
elements, which is equal to n, the order of the transfer function denominator.

The canonical direct form II is presented as “Standard Programming”
in Discrete-Time Control Systems by Ogata. It is known as the “Control
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Canonical Form” in Digital Control of Dynamic Systems by Franklin, Powell,
and Workman.

You can derive the canonical direct form II realization by writing the
discrete-time transfer function with input e(z) and output u(z) as

1
=(by+byz L +...4b, 2™ .
( 0+ b m ) 1+az27 +agz “...+a,z "
ul2) ()
h(z) e(2)
The block diagram for u(z)/h(z) follows.
by
by
h(z) i o 1 b 1(z)
z z = [+
1(z) - —
Rz - bo+byz  +..+b, 2

The block diagrams for A(z)/e(z) follow.
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e(z)

e(z) ~ 1) — < <

hiz) _ 1
e(@) 1+alz_l+c;1t2,z_2'+...+c;;tn,z_yJ

Combining these two block diagrams yields the direct form II diagram shown
in the following figure. Notice that the feedforward part (top of block diagram)
contains the numerator coefficients and the feedback part (bottom of block
diagram) contains the denominator coefficients.

1

bU
Ibl
bm !;:(2’) u(z)
h(2) e(z)
' = 1 s z-l _____ z_]_ - 1
_al
%
-
m
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Canonical Forms

The direct form II example transfer function is given by

1422271 +1.8527240.527°
1-0.5271 +0.84272 +0.09273

H, (2)

The realization of H, () using fixed-point Simulink blocks is shown in the
following figure. You can display this model by typing

fxpdemo_direct_form2

at the MATLAB command line.

E! fxpdemo_direct_form2 - IEllll
File Edit View Simulation Format Tools Help
DFEHE | LBR|[E= 4[] » = poo | [roms AEBERhEl REES®
Fixed-Point Direct Form Filter
b
Zzing
b1
Gainb
b2
.
[T + -
2 Fia Lt ram Fis Output
Input Te FixFt - . 1 . 1 . 1 Fram FixFt Mux2 C:'\'L:s:s:r'
- - - - - - 1
L z z z
. Unit Dalay Unit Dalsy1 Unit Dalsy2 Gain Sum1
b3
Sum
0.5 g
Gzin2
al
-0.54
Gain2
az
-0.0%)
Gain1
Ij a3 Copyright 1980-2005 The MathWerks Inc.

Ready [100% [FixedstepDiscrete v
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Series Cascade Form

In the canonical series cascade form, the transfer function H(z) is written as a
product of first-order and second-order transfer functions:

H(2)= "B 1, (2) Hy () Hy (2). . H, (2).

This equation yields the canonical series cascade form.

(
@ Jaol—meol—g ol — — JF s

Factoring H(z) into H,(z) where i = 1,2,3,...,p can be done in a number of ways.
Using the poles and zeros of H(z), you can obtain H(z) by grouping pairs

of conjugate complex poles and pairs of conjugate complex zeros to produce
second-order transfer functions, or by grouping real poles and real zeros to
produce either first-order or second-order transfer functions. You could also
group two real zeros with a pair of conjugate complex poles or vice versa.
Since there are many ways to obtain H (2), you should compare the various
groupings to see which produces the best results for the transfer function
under consideration.

For example, one factorization of H(z) might be

H(z)= Hy (2)Hy (2)... H, (2)

Lo1+bzt B l+ezlefiz?

:H -

i=1 1+ aiz_ i=j+1 1+ CiZ_l + diZ_z

You must also take into consideration that the ordering of the individual
H (2)’s will lead to systems with different numerical characteristics. You
might want to try various orderings for a given set of H(z)’s to determine
which gives the best numerical characteristics.



Canonical Forms

The first-order diagram for H(z) follows.

x(z) v x) B 3(z)

| -CL

y(z) _ 1+ biz‘l

x(z) 1+aiz‘1

The second-order diagram for H(z) follows.

x(z) D 5 5 7 ¥z)

A

y(z) 1+eiz—1+ fiz‘z

x(z) 1 +ciz—1+ diz‘z

The series cascade form example transfer function is given by
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(14052 1) (1417271 +272)
(1+0.1271)(1-0.621+0.922)

Hex (Z) =

The realization of H, (z) using fixed-point Simulink blocks is shown in the
following figure. You can display this model by typing

fxpdemo_series_cascade_form

at the MATLAB command line.

E! fxpdemo_series_cascade_form ;lglll

File Edit View Simulaton Format Tools Help

DSsEHE| LER(E 4|22 r =P |Nomal Aysmsy nRES®

Fixed-Point Series Cascade Form Filter

¥

Ta FixPt

1.7 +
e "
From FixPt Comparise
Gsind My =EmREniEan
1 1
- > +

z z

P
L

Unit Delay1 FixPtUnit
DelzyZ

7 d
Gsin2 Copyright 1820-2005 The MathWorks Inc.

Ready [100%% [FinedstepDiscrete

Parallel Form

In the canonical parallel form, the transfer function H(z) is expanded into
partial fractions. H(z) is then realized as a sum of a constant, first-order, and
second-order transfer functions, as shown:




Canonical Forms

H, ()= “&) = K+ Hy(2)+Hy(2)+...+ Hp (2).

(2)

o

This expansion, where K is a constant and the H,(z) are the first- and
second-order transfer functions, follows.

H{z)

el(z) u(z)
Hyz) ¥

H(z)

As in the series canonical form, there is no unique description for the
first-order and second-order transfer function. Because of the nature of the
Sum block, the ordering of the individual filters doesn’t matter. However,
because of the constant K, you can choose the first-order and second-order
transfer functions such that their forms are simpler than those for the series

cascade form described in the preceding section. This is done by expanding
H(z) as
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The first-order diagram for H(z) follows.

vz _ b

x(2)  1+a,z71

The second-order diagram for H(z) follows.

g;
f
1
x(z) ¥(z)
T s 3|z'1
-c.
1
-d
1
j-'(z) 3 ei+fiz‘1

x(z) 1+ ciz‘l + a’iz‘z

The parallel form example transfer function is given by
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3.4639 N ~1.0916 +3.00862 1

He’“(z):5'5556_1+0.1z—1 1-0621+40922

The realization of H, (2) using fixed-point Simulink blocks is shown in the
following figure. You can display this model by typing

fxpdemo_parallel_form

at the MATLAB command line.
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Fixed-Point Advisor

e “Working with the Fixed-Point Advisor” on page 5-2

® “Converting a Model from Floating- to Fixed-Point Using Simulation Data”
on page 5-14
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Working with the Fixed-Point Advisor

In this section...

“Introduction to the Fixed-Point Advisor” on page 5-2

“Best Practices for Using the Fixed-Point Advisor” on page 5-2
“Models That Might Cause Data Type Propagation Errors” on page 5-4
“Running the Fixed-Point Advisor” on page 5-7

“Fixing a Task Failure” on page 5-8

“Manually Fixing Failures” on page 5-9

“Automatically Fixing Failures” on page 5-9

“Batch Fixing Failures” on page 5-10

“Restore Points” on page 5-10

“Saving a Restore Point” on page 5-11

“Loading a Restore Point” on page 5-12

Introduction to the Fixed-Point Advisor

The Fixed-Point Advisor provides a set of tasks to help you prepare a model
for conversion from a floating-point model or subsystem to an equivalent
fixed-point representation. After preparing the model for conversion, use the
Fixed-Point Tool to obtain initial scaling and then refine the scaling.

Best Practices for Using the Fixed-Point Advisor

Start with a Known Working Model

Check that update diagram succeeds for your model before using the
Fixed-Point Advisor. (To update diagram, press Ctrl+D.) If update diagram
fails, fix the failure in your model before you start converting your model.

Back Up Your Model
Always back up your Simulink model before using the Fixed-Point Advisor.
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This practice provides a fallback in case of error and a baseline for testing
and validation.

Convert Small Models

The Fixed-Point Advisor is intended to assist in converting small models.
Larger models can result in long processing times.

Convert Subsystems

Convert subsystems within your model, rather than the entire model. This
practice saves time and unnecessary conversions.

Specify Short Simulation Run Times

Specifying small simulation run times reduces task processing times. You
can change the simulation run time in the Configuration Parameters dialog
box. See “Start time” and “Stop time” in the Simulink Reference for more
information.

Make Small Changes to Your Model

Make small changes to your model so that you can identify where errors are
introduced accidentally.

Isolate the System Under Conversion

If you encounter data type propagation issues with a particular subsystem,
isolate this subsystem by placing Data Type Conversion blocks on the inputs
and outputs of the system. The Data Type Conversion block converts an input
signal of any Simulink software data type to the data type and scaling you
specify for its Qutput data type parameter. This practice enables you to
continue converting the rest of your model.

The ultimate goal is to replace all blocks that do not support fixed-point data

types. You must eventually replace blocks that you isolated with Data Type
Conversion blocks with blocks that do support fixed-point data types.
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Use Lock Output Data Type Setting When Necessary

You can prevent the Fixed-Point Advisor replacing the current data type. Use
the Lock output data type setting against changes by the fixed-point
tools parameter available on many blocks. The default setting allows
replacement. Use this setting when:

® You already know the fixed-point data types you want to use for a
particular block.

For example, the block is modeling a real-world component. Set up the
block to allow for known hardware limitations, such as restricting outputs
to integer values.

Specify the output data type of the block explicitly and select Lock output
data type setting against changes by the fixed-point tools.

® You are debugging a model and know that a particular block accepts only
certain data types.

Specify the output data type of upstream blocks explicitly and select Lock
output data type setting against changes by the fixed-point tools.

Save Simulink Signal Objects Before Closing Your Model

The Fixed-Point Advisor proposes data types for Simulink signal objects in
your model. However, it does not automatically save Simulink signal objects.
To preserve changes, save the Simulink signal objects in your workspace
and model before closing the model.

Save Restore Point

Consider saving a restore point before making changes to your model that
might cause subsequent update diagram failure. For example, before applying
proposed data types in task 3.1. For more information, see “Saving a Restore
Point” on page 5-11.

Models That Might Cause Data Type Propagation
Errors

The Fixed-Point Advisor is not aware of all potential scaling issues and might
propose data types that cause subsequent data propagation errors. To ensure
that you can recover your original data type settings, back up your model
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before using the Fixed-Point Advisor. For more information about backing

up your model and other best practices for using the Fixed-Point Advisor, see

“Best Practices for Using the Fixed-Point Advisor” on page 5-2.

The following models are likely to cause data type propagation issues:

Model Uses...

Fixed-Point Advisor
Behavior

Data Type Propagation
Issue

Buses Not aware of the Fixed-Point Advisor might
minimum, maximum, | propose data types that are
data type, and initial | inconsistent with the data
value information for | types for the bus object.
bus objects and does
not include them in
autoscaling.

Simulink Does not consider Fixed-Point Advisor might

parameter objects

any data type
information for
Simulink parameter
objects.

propose data types that are
inconsistent with the data
types for the parameter
object.
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Model Uses...

Fixed-Point Advisor
Behavior

Data Type Propagation
Issue

User-defined
S-functions

Not aware of
the operation
of user-defined
S-functions.

¢ The user-defined
S-function only accepts
certain input data types.
The Fixed-Point Advisor
is not aware of this
requirement and proposes
a different data type
upstream of the S-function.
Update diagram fails on
the model due to data type
mismatch errors.

¢ The user-defined
S-function specifies certain
output data types. The
Fixed-Point Advisor is not
aware of this requirement
and does not use it when
autoscaling. Therefore it
might propose data types
that are inconsistent with
the data types for the
S-function.

User-defined
masked
subsystems

Has no knowledge of
the masked subsystem
workspace and
therefore cannot take
this into account when
autoscaling.

Fixed-Point Advisor might
propose data types that

are inconsistent with the
requirements of the masked
subsystem, particularly if
the subsystem uses mask
initialization. The proposed
data types might cause data
type mismatch errors or
overflows.
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Model Uses...

Fixed-Point Advisor
Behavior

Data Type Propagation

Issue

Linked subsystems

Does not include
linked subsystems
when converting your
model.

Data type mismatch errors
might occur at the linked

subsystem boundaries.

MATLAB Function
blocks

Does not propose data
types for MATLAB
Function blocks.

Fixed-Point Advisor might
propose data types that

are inconsistent with

the requirements of the
MATLAB Function blocks.
The proposed data types

might cause data type

mismatch errors or overflows.

Model reference

Does not propose data
types for referenced
models.

Data type propagation errors
might occur at the referenced

model’s boundaries.

Blocks whose
output is always
floating-point

for floating-point
inputs regardless
of their output data
type setting. For
example, Discrete
Filter block and
many DSP System
Toolbox blocks.

Might not propose
data types for these
blocks as they do not
allow you to set the
output data type to
double or single.

Date type propagation errors
might occur because the
Fixed-Point Advisor is unable
to lock down the output data

type of these blocks.

Running the Fixed-Point Advisor

1 Open a model.

2 Start the Fixed-Point Advisor by:

® Typing fpcadvisor ('model_name/subsystem_name') at the MATLAB

command line
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e Selecting a subsystem and, from the Tools menu, selecting
Fixed-Point > Fixed-Point Tool to open the Fixed-Point Tool. In the
Fixed-Point Tool Fixed-point preparation for selected system pane,
click Fixed-Point Advisor.

® Right-clicking a subsystem block and, from the subsystem context menu,
selecting Fixed-Point > Fixed-Point Tool to open the Fixed-Point
Tool. In the Fixed-Point Tool Fixed-point preparation for selected
system pane, click Fixed-Point Advisor.

The Fixed-Point Advisor window opens.
3 Select the Fixed-Point Advisor folder in the left pane.

4 Run the advisor by:
e Selecting Run to Failure from the Run menu

¢ Right-clicking the Fixed-Point Advisor folder and selecting Run to
Failure from the folder context menu

The Fixed-Point Advisor runs the tasks in order until a task fails. A
waitbar is displayed while each task runs.

5 Review the results. If a task fails because input parameters are not
specified, select an Input Parameter. Then continue running to failure by
right-clicking the task and selecting Continue from the context menu. If
the task fails for a different reason, fix the task as described in “Fixing a
Task Failure” on page 5-8.

Fixing a Task Failure

Tasks fail when there is a step for you to take to convert your model from
floating-point to fixed-point. For more information on why a specific task fails,
see the Chapter 12, “Fixed-Point Advisor Reference”.

You can fix a failure using three different methods:

¢ Fix the failure by following the instructions in the Analysis Result box. Use
this method to fix failures individually. See “Manually Fixing Failures”
on page 5-9
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® Fix the failure using the Action box. Use this method to automatically fix
all failures. See “Automatically Fixing Failures” on page 5-9.

¢ Fix the failure using the Model Advisor Results Explorer. Use this method
to batch fix failures. See “Batch Fixing Failures” on page 5-10

Note A warning result is meant for your information. You can choose to fix
the reported issue, or to move on to the next task.

Manually Fixing Failures

All checks have an Analysis Result box that describes the recommended
actions to manually fix failures.

To manually fix warnings or failures within a task:

1 Optionally, save a restore point so you can undo the changes that you
make. For more information, see “Saving a Restore Point” on page 5-11.

2 In the Analysis Result box, review the recommended actions. Use the
information to make changes to your model.

3 To verify that the task now passes, in the Analysis box, click Run This
Task.

Automatically Fixing Failures

You can automatically fix failures using the Action box. The action box applies
all of the recommended actions listed in the Analysis Result box.

Caution You should review the Analysis Result box prior to automatically
fixing failures to ensure that you want to apply all of the recommended
actions.

Automatically fix all failures within a task using the following steps:

1 Optionally, save a restore point so you can undo the changes that you
make. For more information, see “Saving a Restore Point” on page 5-11.
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2 In the Action box, click Modify All.
The Action Result box displays a table of changes.

3 To verify that the task now passes, in the Analysis box, click Run This
Task.

Batch Fixing Failures

If a task fails and you want to explore the results and make batch changes,
use the following steps.

1 Optionally, save a restore point so you can undo the changes that you
make. For more information, see “Saving a Restore Point” on page 5-11.

2 In the Analysis box, click Explore Result.
The Model Advisor Result Explorer dialog box opens.
3 Use the Model Advisor Result Explorer to modify block parameters.

4 When you have finished making changes, in the Fixed-Point Advisor
window, click Run This Task to see if the changes you made results in
the task passing. Continue fixing failures and rerunning the task until
the task passes.

Restore Points

The Fixed-Point Advisor provides a model and data restore point capability for
reverting changes that you made in response to advice from the Fixed-Point
Advisor. A restore point is a snapshot in time of the model, base workspace,
and Fixed-Point Advisor.

Caution A restore point saves only the current working model, base
workspace variables, and Fixed-Point Advisor tree. It does not save other
items, such as libraries and referenced submodels.

To learn how to save a restore point, see “Saving a Restore Point” on page 5-11.
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To learn how to load a restore point, see “Loading a Restore Point” on page
5-12.

Saving a Restore Point

When to Save a Restore Point
Consider saving a restore point:

® Before applying changes to your model that might cause update diagram
failure. For example, before applying proposed data types in task 3.1.

¢ Before attempting to fix failures.

How to Save a Restore Point

You can save a restore point and give it a name and optional description, or
allow the Fixed Point Advisor to automatically name the restore point for you.

To save a restore point with a name and optional description:

1 From the main menu, select File > Save Restore Point As.

The Save Model and Data Restore Point dialog box opens.

=] Fixed-Point Advisor: Save Model and Data Restore Point - fxpdeme x|
Mo restore point saved,
Mame Descriotion Time
1 | B
MName: IFlestn:urEF‘Dintl Description: I
Save | Delete | Cancel | Help |

2 In the Name field, enter a name for the restore point.
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3 In the Description field, you can optionally add a description to help you
identify the restore point.

4 Click Save.

The Fixed Point Advisor saves a restore point of the current model, base
workspace, and Fixed Point Advisor status.

Note To quickly save a restore point, go to File > Save Restore Point. The
Fixed Advisor saves a restore point with the name autosaven, where n is the
sequential number of the restore point. If you use this method, you cannot
change the name of, or add a description to, the restore point.

Loading a Restore Point

When to Load a Restore Point
Load a restore point when:

e A task fails and you cannot continue the conversion. In this case, load
a restore point saved earlier in the run to avoid having to rerun all the
previous tasks.

® You want to revert changes you made in response to advice from the
Fixed-Point Advisor.

How to Load a Restore Point
To load a restore point:

1 Go to File > Load Restore Point.

The Load Model and Data Restore Point dialog box opens.
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=] Fixed-Point Advisor: Load Model and Data Restore Point - fixpdemo

Select a restore point to load.

Hame Descriotion Time

RestorePoint1 fupdemo_fpa task 1.5 29-5ep-2009 14:59:59

RestorePoint2 |Fx|:u:|em-:|_fpa task 1.6.2 29-5ep-2009 15:00:22

| | B
Load Delete Cancel | Help |

2 Select the restore point that you want.

3 Click Load.

The Model Advisor issues a warning that the restoration will overwrite

the current model and workspace.

4 Click Load to load the restore point you selected.

The Fixed Point Advisor reverts the model, base workspace, and Fixed

Point Advisor status.
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Converting a Model from Floating- to Fixed-Point Using
Simulation Data

In this section...

“About This Example” on page 5-14

“Starting the Preparation” on page 5-14

“Prepare Model for Conversion” on page 5-15

“Prepare for Data Typing and Scaling” on page 5-21

“Propose Data Types Based on the Simulation Reference Run” on page 5-24
“Apply the New Fixed-Point Data Types” on page 5-26

“Simulate Using New Fixed-Point Settings” on page 5-26

About This Example

This example steps you through using the Fixed-Point Advisor to prepare the
fxpdemo_fpa model for conversion from using floating-point data types to
using fixed-point data types. This example shows you how to:

Set model-wide configuration options.

Set block-specific parameters.

Obtain an initial fixed-point data types for the model.

Validate the fixed-point data types against the floating-point model.

Starting the Preparation

1 Open the model, at the command line, enter: fxpdemo_fpa.
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2 To start the conversion:

a Right-click Controller System and, from the subsystem context menu,
select Fixed-Point Tool.

b In the Fixed-Point Tool Fixed-point preparation for selected system
pane, click the Fixed-Point Advisor button.

The Fixed-Point Advisor opens for the subsystem Controller System.

0 Frumdd. Pesint Acvitee « frpidsrmas [paiContreller Stem

- A

|
|
o 3

Prepare Model for Conversion
First, validate model-wide settings and create reference simulation data.

1 For the purpose of this tutorial, run the tasks in the Fixed-Point Advisor
Prepare Model for Conversion folder one at a time. In the left pane,
select Verify model simulation settings and, in the right pane, click
Run This Task.

This task validates that model simulation settings allow signal logging and
disables data type override to facilitate conversion to fixed point. These
settings ensure that fixed-point data can be logged in downstream tasks.
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The task passes.
2 Select and run Verify update diagram status.

Your model must be able to successfully complete an update diagram action
to run the checks in the Fixed-Point Advisor.

The task passes.
3 Select and run Address unsupported blocks.

This task identifies blocks that do not support fixed-point data types.

The Fixed-Point Advisor cannot convert these blocks. To complete the
conversion of your model, replace these blocks with Simulink built-in
blocks that do support fixed-point data types. If a replacement block is not
available, you can temporarily isolate the unsupported block with Data
Type Conversion blocks.

The task fails because the model contains a block that does not support
fixed-point data types.

4 Fix the failure by replacing the TrigFcn block with the provided
replacement:
a Click the Preview link to view the replacement block.

b Click the link to the original block and view its settings.

¢ Double-click the replacement block and verify its settings match the
settings of the original block.

Note If the settings on the replacement block differ from the settings
on the original block, set up the replacement block to match the original
block.

d In the Controller System subsystem, right-click the original TrigFcn
block. From the context menu, select Replace with Lookup Table.

The Fixed-Point Advisor replaces the original block.
e In the Fixed-Point Advisor, rerun the task. The task passes.
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5 Select and run Set up signal logging. Because you are using simulation
minimum and maximum data, you must specify at least one signal to use
in analysis and comparison in downstream checks. You should log, at
minimum, the unique input and output signals.

The task runs and the Fixed-Point Advisor warns that signal logging is
not specified for any signals.

6 Because you want to propose data types based on simulation data, fix the
warning:

a Click the Explore Result button.

b In the Model Advisor Result Explorer, select the signals you want to log
and select the EnableLogging check box.

For this tutorial, log the signals connected to the Inport and Outport
blocks:

® Ctr_in

e Ctr_out

Tip

® The menus at the top of the Model Advisor Result Explorer allow you
to change the information displayed in the center pane.

® You can edit properties in the Model Advisor Result Explorer.
For more information, see “The Model Explorer: Overview” in the
Simulink documentation.

® When you update a property value in the center pane, the Signal
Properties (right) pane updates to contain the same information.

a Close the Model Advisor Result Explorer.
b In the Fixed-Point Advisor, rerun the task.

The task passes because signal logging is enabled for at least one signal.
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7 Select and run Create simulation reference data. The Fixed-Point
Advisor simulates the model using the current solver settings, and creates
and archives reference signal data to use for analysis and comparison in
later conversion tasks.

Tip If the simulation is set up to have a long simulation time, after
starting this task, you can stop the simulation by selecting the waitbar and
then pressing Ctrl+C. This allows you to change the simulation time and
continue without having to wait for the long simulation to complete.

The task runs and the Fixed-Point Advisor warns that logging is not
enabled.

8 To fix the failure, in the Action box click Modify All.

The Modify All action configures the model to the settings recommended
in the Analysis Result. The Action Result box displays a table of changes.

Caution You should review the Analysis Result box prior to automatically
fixing failures to ensure that you want to apply all the recommended
actions.

9 Click the Run This Task button.

The task passes and the tool stores the results in a run named
FPA_Reference.

Tip You can view these results in the Fixed-Point Tool Contents pane.

10 Open the Verify Fixed-Point Conversion Guidelines folder. Select and
run Check model configuration data validity diagnostic parameters
settings. This task verifies that the Configuration Parameters >
Diagnostics > Data Validity > Parameters options are all set to
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warning. If these options are set to error, the model update diagram
action fails in later tasks.

The task passes.

Select and run Implement logic signals as Boolean data. This task
verifies that Configuration Parameters > Optimization > Implement
logic signals as Boolean data is selected. If it is cleared, the code
generated in downstream checks is not optimized.

The task passes.
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12 Select and run Check for proper bus usage. This task identifies:
e Mux blocks that are bus creators

® Bus signals that the top-level model treats as vectors

Note This is a Simulink check. For more information, see “Check for
proper bus usage” in the Simulink documentation.

The task passes.

13 Select and run Simulation range checking. This tasks verifies that
the Configuration Parameters > Diagnostics > Simulation range
checking option is not set to none. A warning is displayed because
Simulation range checking is currently set to none. The recommended
setting is warning so that warnings are generated when signals exceed the
specified minimum or maximum values.

14 Fix the warning by applying the recommended setting using the Modify
All button and rerun the task.

The task passes.

15 Select and run Check for implicit signal resolution. This task checks
for models that use implicit signal resolution. To use the Fixed-Point
Advisor for Simulink signal object scaling, turn off implicit signal resolution
by setting the Diagnostics > Data Validity > Signal resolution
property in the Configuration Parameters dialog box to Explicit only
and enforce resolution for each of the signals and states that currently
resolve successfully. For more information, see “Signal resolution” in the
Simulink documentation.

The task passes because the model contains no Simulink signal objects.
The run to failure action has completed for the Prepare Model for

Conversion folder. At this point, you can review the results report found at
the folder level, or continue to the next folder.
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Prepare for Data Typing and Scaling

This folder contains tasks that set the block configuration options and set
output minimum and maximum values for blocks. The block settings from
this task simplify the initial scaling. The optimal block configuration is
achieved in later stages. The tasks in this folder prepare the model for scaling
by the Fixed-Point Tool.

1 Right-click Prepare for Data Typing and Scaling and select Run to
Failure.

The Fixed-Point Advisor runs the Review locked data type settings
task. This task identifies blocks that have their data type settings locked
down, which excludes them from autoscaling.

The task passes because it finds no blocks with locked scaling.

2 The Fixed-Point Advisor runs the Remove output data type inheritance
task. This task identifies blocks with the OQutput data type property set to
Inherit. Inherited data types might lead to data type propagation errors.

The task fails because some blocks in the model have inherited output
data types.

3 Fix the failure using the Modify All button to explicitly configure the
output data types to the recommended values, and rerun the task.

The task passes.

4 Continue running to failure. Relax input data type settings runs. This
task i1dentifies blocks with input data type constraints that might lead to
data type propagation errors.

The task passes because all blocks have flexible input data types.

5 Verify Stateflow charts that have strong data typing with Simulink
runs. This task verifies that all Stateflow charts are configured to have
strong data typing with Simulink I/O.

The task passes because the model does not have any Stateflow charts.
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6 Remove redundant specification between signal objects and blocks
runs. This task identifies and removes redundant data type specification
originating from blocks and Simulink signal objects.

The task passes because the model contains no resolved Simulink signal
objects.

7 Verify hardware selection runs. This task identifies the hardware
device information in the Hardware Implementation pane of the
Configuration Parameters dialog box.

The task fails because the Configuration Parameters > Hardware
Implementation option does not provide values for the Device vendor
and Device type parameters.

8 Fix the failure:
a Click the Hardware Implementation Device settings link.

b In the Configuration Parameters dialog box Hardware
Implementation pane, change:

® Device vendor to Generic
* Device type to 32-bit Embedded Processor
¢ Click OK to apply the settings.

The changes are applied and the Configuration Parameters dialog box
closes.

9 In the Fixed-Point Advisor window, rerun the task.

The task fails because you must specify a default data type for floating-point
data types that is suitable for the chosen hardware.

10 Fix the failure by setting Default data type for all floating-point
signals to int16.

The software uses this default data type for all output signals. The
Fixed-Point Advisor suggests the Same as embedded hardware integer
setting, which is int32. But, because the model performs many
multiplications and you want the product to fit into int32, use int16.
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11 Rerun the task.

The task passes.

12 Select and run Specify block minimum and maximum values.

The Fixed-Point Advisor warns you that you have not specified any
minimum and maximum values. Ideally, you should specify block output
and parameter minimum and maximum values for, at minimum, the Inport
blocks in the system. You can specify the minimum and maximum values
for any block in this step. Typically, they are determined during the design
process based on the system you are creating.

13 Fix the warning by specifying minimum and maximum values for Inport
blocks:

Click the Explore Result button.
The Model Advisor Result Explorer opens, displaying the Inport blocks
that do not have an output minimum and maximum specified.

In the Model Advisor Result Explorer center pane, select Ctr_in. For
the purpose of this tutorial, you want to specify the output minimum and
maximum values for this block. Set OutMin to -5 and set OutMax to 5.

Close the Model Advisor Result Explorer.
In the Fixed-Point Advisor, rerun the task.

The task passes because minimum and maximum values are specified
for all Inport blocks.

For the purpose of this tutorial, do not specify other minimum and
maximum values for other blocks. You can review the results report
found at the folder level.

14 Select and run Return to the Fixed-Point Tool to perform data
typing and scaling.

The Fixed-Point Advisor closes and returns you to the Fixed-Point Tool.

15 In the Fixed-Point Tool Contents pane, examine the results for the
simulation reference run. One of the TrigFcn block outputs overflowed
multiple times, indicating that the fixed-point settings on this block are
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not suitable for the input range. To refine the fixed-point data types, first
run the model with a global override of the fixed-point data types using
double-precision numbers to avoid quantization effects. This provides a
floating-point benchmark that represents the ideal output. Then, propose
new data types based on these “ideal” results.

Propose Data Types Based on the Simulation
Reference Run

Now, use the Fixed-Point Tool to propose fixed-point data types based on the
simulation reference (FPA_Reference) run.

1 In the Fixed-Point Tool:
a Click the Propose fraction lengths button
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b Because you are proposing data types based on fixed-point results, the
tool 1ssues a warning. In the warning dialog box, click Yes.

The Fixed-Point Tool proposes new data types for objects in the model
and updates the results in the Contents pane.

In the Fixed-Point Tool, set the Column View to Autoscaling with

Simulation Min/Max View to display information relevant to the proposal.

The tool displays the proposed scaling in the ProposedDT column in the
Contents pane.

To accommodate the full simulation range, the Fixed-Point Tool proposes
new data types for some blocks in the model. Because the TrigFcn block is
a linked library, the tool does not propose new data types for this block.

Examine the results to resolve any conflicts and to ensure that you want
to accept the proposed data type for each result.

In the Fixed-Point Tool toolbar, select Show > Conflicts with proposed
data types.

The Fixed-Point Tool detected no conflicts, so you are ready to apply the
new data types as described in “Apply the New Fixed-Point Data Types”
on page 7-24.
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Apply the New Fixed-Point Data Types

1 Click Apply accepted fraction lengths

to write the proposed data types to the model.
2 In the Fixed-Point Tool toolbar, select Show > All results.

The tool has set all the specified data types to the proposed types.

Simulate Using New Fixed-Point Settings
1 In the Shortcuts to set up runs pane, click the Model-wide no override

and full instrumentation button to use the locally specified data type
settings.
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2 In the Fixed-Point Tool Model Hierarchy pane, select the Controller
Subsystem.

3 Click Simulate to run the simulation.

The Simulink software simulates using the new scaling that you applied in
the previous step and stores the results in the NoOverride run.

4 Examine the results. Because the tool did not propose new data types for
the TrigFcn block, this block still overflows.
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e “Overview of the Fixed-Point Tool” on page 6-2
¢ “Run Management” on page 6-6

¢ “Debugging a Fixed-Point Model” on page 6-12
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Overview of the Fixed-Point Tool

In this section...

“Introduction to the Fixed-Point Tool” on page 6-2
“Opening the Fixed-Point Tool” on page 6-3

“Understanding the Interface” on page 6-4

Introduction to the Fixed-Point Tool

The Fixed-Point Tool is a graphical user interface that automates the task
of specifying fixed-point data types in a model. The tool collects range data
for model objects, either from design minimum and maximum values that
objects specify explicitly, from logged minimum and maximum values that
occur during simulation, or from minimum and maximum values derived
using range analysis. Based on these values, the tool proposes fixed-point
scaling that maximizes precision and covers the range. The tool allows you to
review the data type proposals and then apply them selectively to objects in
your model.

Fixed-Point Tool Capability For More Information

Deriving range information based on | Chapter 10, “Range Analysis”
specified design range

Proposing data types based on “Automatic Data Typing Using
simulation data Simulation Data” on page 9-11
Proposing data types based on “Automatic Data Typing Using
derived ranges Derived Minimum and Maximum

Values” on page 9-30

Proposing data types based on “Proposing Data Types For a
simulation data from multiple runs | Model Using Results from Multiple
Simulations” on page 9-73

Debugging fixed-point models “Debugging a Fixed-Point Model” on
page 6-12
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Opening the Fixed-Point Tool
Use any of the following methods to open the Fixed-Point Tool:

® From the Simulink Tools menu, select Fixed-Point Tool.

® From a model’s context (right-click) menu, select Fixed-Point Tool.

® From a subsystem’s context (right-click) menu, select Fixed-Point Tool.
Alternatively, you can use the fxptdlg function to open the tool

programmatically. See fxptdlg in the Simulink Reference for more
information.
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Understanding the Interface

When you first open the Fixed-Point Tool, it appears as shown here.

[& Fixed-Point Tool
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B ® @ @ ot og @ [ | show:{alresults =

Model Hierarchy
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Highlight results with potential issues
Automatic data typing for selected system
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Apply accepted fraction lengths

(4) Show details for selected result

J Revert

Apply




Overview of the Fixed-Point Tool

The Fixed-Point Tool contains the following components:

® Model Hierarchy pane — Displays a tree-structured view of the Simulink
model hierarchy.

¢ Contents pane — Displays a tabular view of objects that log fixed-point
data in a system or subsystem.

® Dialog pane — Displays parameters for specifying particular attributes
of a system or subsystem, such as its data type override and fixed-point
instrumentation mode.

® Main toolbar — Provides buttons that execute commonly used Fixed-Point
Tool commands.

¢ Shortcut Editor — Provides ability to configure shortcuts that set up the
run name as well as model-wide data type override and instrumentation
settings prior to simulation or range derivation. Open the Shortcut
Editor by clicking the Dialog Pane Add/Edit shortcuts link. For more
information, see “Configuring Runs with the Shortcut Editor” on page 6-7.

For more information about each of these components, see the documentation
for the fxptdlg function in the Simulink Reference.
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Run Management

In this section...

“Managing Runs with the Shortcut Editor” on page 6-6
“Managing Runs Manually” on page 6-6

“Configuring Runs with the Shortcut Editor” on page 6-7
“Why Use Shortcuts?” on page 6-7

“When to Use Shortcuts” on page 6-8

“Adding Shortcuts” on page 6-9

“Editing Shortcuts” on page 6-9

“Deleting Shortcuts” on page 6-11

“How to Capture Current Model Settings Using the Shortcut Editor” on
page 6-11

Managing Runs with the Shortcut Editor

The Fixed-Point Tool supports multiple runs. Each run uses one set of model
settings to simulate the model or to derive or propose data types. You can
easily switch between different run setups using shortcuts. You can:

® Store multiple runs.

® Specify custom run names.

® Propose data types based on the results in any run.

* Apply data type proposals based on any run.

¢ Compare the results of any two runs.

® Rename runs directly in the Fixed-Point Tool Contents pane.

Managing Runs Manually

In addition to using shortcuts, you can manually manage runs using the
following settings:
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¢ In the Data collection pane, Store results in run.

Provide a new run name before a simulation or collecting derived minimum
and maximum values so that you do not overwrite existing runs.

® In the Settings for selected system pane:
= Fixed-point instrumentation mode
= Data type override

= Data type override applies to

Configuring Runs with the Shortcut Editor

You can use shortcuts to configure the run name as well as model-wide
data type override and instrumentation settings prior to simulation. The
Fixed-Point Tool provides:

® Frequently used factory default shortcuts, such as Model-wide double
override and full instrumentation, which sets up your model so that
you can override all fixed-point data types with double-precision numbers
and log the simulation minimum and maximum values and overflows.

¢ The ability to add and edit custom shortcuts. The shortcuts are saved with
the model so that you need only define them once and then reuse them
multiple times. Use the Shortcut Editor to create or edit shortcuts and
to add and organize shortcut buttons in the Fixed-Point Tool Shortcuts
to set up runs pane.

Why Use Shortcuts?

Shortcuts provide a quick and easy method to set up a run with pre-configured
data type override and fixed-point instrumentation settings prior to
simulation or range derivation. You can also associate a run name with each
shortcut. When you apply a shortcut, you change the data type override and
fixed-point instrumentation settings of multiple systems in your hierarchy

at once.

Shortcuts:
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e Simplify the workflow. For example, you can collect a floating-point

baseline in a clearly named run.

® Provide the ability to configure data type override and instrumentation
settings on multiple subsystems in the model hierarchy at the same time.
This capability is especially useful for models that have a complicated

hierarchy.

® Are a convenient way to store frequently used settings and reuse them.
This capability is particularly useful when switching between different

settings during debugging.

® Provide a way to store the original fixed-point instrumentation and
data type override settings for the model. Preserving these settings in a
shortcut provides a fallback in case of failure and a baseline for testing

and validation.

When to Use Shoricuts

To do this

Use

Autoscale your entire model

The factory default shortcuts.
These defaults provide an efficient
way to override the model with
floating-point data types or remove
existing data type overrides. For
example, see “Proposing Fraction
Lengths for a Feedback Controller
Using Simulation Range Data” on
page 9-55.

Debug a model

Shortcuts to switch between
different data type override and
fixed-point instrumentation modes.
For example, see “Debugging a
Fixed-Point Model” on page 6-12.
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To do this

Use

Manage the settings on multiple
systems in a model. For example,
if you are converting your model to

fixed point one subsystem at a time.

The Shortcut Editor to define your
own shortcuts so that you can switch
between different settings without
manually changing individual
settings each time.

Capture the initial settings of the
model before making any changes
to it.

The Shortcut Editor to capture the
model settings and save them in a
named run. For more information,
see “How to Capture Current Model
Settings Using the Shortcut Editor”
on page 6-11.

Adding Shortcuts

1 On the Fixed-Point Tool Shortcuts to set up runs pane, click Add/Edit

shortcuts.

2 For each subsystem that you want to specify a shortcut for, In the Shortcut
Editor Model Hierarchy pane, select the subsystem:

a Enter the shortcut name in the Name of shortcut field.

By default, if Allow modification of run name is selected, the
software sets the Run name to the shortcut name. You can manually

override the name.

b Edit the shortcut properties. See “Editing Shortcuts” on page 6-9.

For example, see “Setting Up Shortcuts” on page 6-15.

Editing Shortcuts

1 On the Fixed-Point Tool Shortcuts to set up runs pane, click Add/Edit

shortcuts.

2 In the Shortcut Editor, from the Name of shortcut list, select the shortcut

that you want to edit.
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The editor displays the run name, fixed-point instrumentation settings,
and data type override settings defined by the shortcut.

Note You cannot modify the factory default shortcuts.

3 If you do not want this shortcut to modify the existing fixed-point
instrumentation settings on the model, clear Allow modification of
fixed-point instrumentation settings.

4 If you do not want this shortcut to modify the existing data type override
settings on the model, clear Allow modification of data type override
settings.

5 If you do not want this shortcut to modify the run name on the model, clear
Allow modification of run name.

6 If you want to modify the shortcut for a subsystem:
a Select the subsystem.

b If applicable, set the Fixed-point instrumentation mode that you
want the Fixed-Point Tool to use when you apply this shortcut.

¢ If applicable, set the Data type override mode that you want the
Fixed-Point Tool to use when you apply this shortcut.

d If applicable, set the Run name that you want the Fixed-Point Tool to
use when you apply this shortcut.

e Click Apply.

7 Repeat the previous step until you have modified the shortcut for the
subsystems of interest.

8 Optionally, if you want the Fixed-Point Tool to display a button for this
new shortcut, use the right arrow control to move the shortcut to the list of
shortcuts to display. You can change the order of the shortcut buttons by
using the up and down arrow controls.

9 Save the model to store the shortcut with the model.
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Deleting Shortcuts

To delete a shortcut permanently from a model:

1 On the Fixed-Point Tool Shortcuts to set up runs pane, click Add/Edit
shortcuts.

2 On the Shortcut Editor Manage shortcuts pane, in the Shortcuts table,
select the shortcut that you want to delete.

3 Click the Delete selected shortcut button, \i/

How to Capture Current Model Settings Using the
Shortcut Editor

1 On the Fixed-Point Tool Shortcuts to set up runs pane, click Add/Edit
shortcuts.

2 In the Shortcut Editor, create a new shortcut, for example, Initial
subsystem settings.

By default, if Allow modification of run name is selected, the software
sets the Run name to the shortcut name. You can manually override
the name.

3 Verify that Allow modification of fixed-point instrumentation
settings and Allow modification of data type override settings are
selected.

4 Click Capture system settings.

The software sets the Fixed-point instrumentation mode, Data type
override, and, if appropriate, Data type override applies to, settings to
the settings for the systems in the model hierarchy.

5 Click Apply.

6 Save the model to store the shortcut with the model.
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Debugging a Fixed-Point Model

6-12

In this section...

“Learning Objectives” on page 6-12

“Initial System Behavior” on page 6-12

“Debugging the Model Behavior” on page 6-14

“Simulating Using a Different Input Stimulus” on page 6-16
“Debugging with the New Input” on page 6-17

“Proposing Fraction Lengths for Math2 Based on Simulation Results” on
page 6-17

“Verifying the New Settings” on page 6-18

Learning Objectives
This example shows how to:

¢ Identify which parts of a model cause numeric problems.

The current fixed-point settings on this model cause overflows. You debug
the model by overriding the fixed-point settings on one subsystem at a
time and simulating the model to determine how these fixed-point settings
affect the model behavior.

® (Create and use shortcuts to set up fixed-point instrumentation and data
type override settings for different runs.

Because you need to optimize the model for two different inputs, you
switch several times between different data type override and fixed-point
instrumentation settings. Using shortcuts facilitates changing these
settings.

® Autoscale the model over the complete simulation range for both inputs.

Initial System Behavior

Initially, the input to the Gain block is a sine wave of amplitude 7. Simulate
the model using local system settings and with logging enabled to see if any
overflows or saturations occur.




Debugging a Fixed-Point Model

1 Open the ex_fixedpoint debug model. At the MATLAB command line,
enter:

run(docpath(fullfile(docroot, 'toolbox', 'fixpoint', 'examples', 'ex_fixedpoint_debug.mdl')))

-

W = fixedpoint_debug = !'“@_”_iﬁn_l
File Edit View Simulation Format Tools Help
=y = = 262 p m 100 |Nomal ~| =
W
s = Outl o 11
Chirp Signal? oz Cunt —I--l'-+
i i
subsyséA /W“ Kt
= . subsysHB
6.95 Chirp Signall
Gostn] Manual Switch S3in
Sine Wavel
Ready [87% ' . 'FixedStepDiscrete

2 From the model Tools menu, select Fixed-Point Tool.

3 In the Fixed-Point Tool, set up a shortcut for the initial system settings:
a On the Shortcuts to set up runs pane, click Add/Edit shortcuts.
b In the Shortcut Editor:
i Inthe Model Hierarchy pane, select subsysA>Mathi.
ii In the Name of shortcut field, enter Setting A.

The editor sets the Run name for this shortcut to Setting A.

iii Set Fixed-point instrumentation mode to Minimums, maximums
and overflows.

iv Set Data type override to Use local settings.
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v Click Apply.

vi In the Model Hierarchy pane, select subsysA>Math2 and repeat
steps (111) to (v).

vii In the Manage shortcuts pane, under Shortcuts, select Setting A
then click the right arrow control to move this shortcut to the list of
shortcuts displayed in the Fixed-Point Tool.

4 Use this shortcut to set up a run and then use the settings to simulate
the model.

a In the Fixed-Point Tool Model Hierarchy pane, select
ex_fixedpoint_debug.

b In the Shortcuts to set up runs pane, click Setting A.
¢ Click the Simulate button, @

The Simulink software simulates the model using the fixed-point
instrumentation and data type settings specified in Setting A.
Afterward, the Fixed-Point Tool displays in its Contents pane the
simulation results for each block that logged fixed-point data. The tool
stores the results in the run named Setting A. The Fixed-Point tool
highlights subsysB/Math2/Add1:0utput in red to indicate that there is
an issue with this result. The OverflowWraps column for this result
shows that the block overflowed 51 times, which indicates a poor guess
for its scaling.

Debugging the Model Behavior

To debug the model, first simulate the model using local settings on

the subsystem Math1 while overriding the fixed-point settings on Math2
with doubles. Simulating subsystem Math2 with doubles override avoids
quantization effects for this subsystem. If overflows occur, you can deduce
that there are problems with the fixed-point settings in subsystem Math1.

Next, simulate using local settings on Math2 and doubles override on Math1. If
overflows occur for this simulation, you can deduce that there are problems
with the fixed-point settings for subsystem Math2.
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Setting Up Shoricuts

1 Use the Shortcut Editor to create the following new shortcuts.

Shortcut Subsystem | Fixed-point Data type Data type
Name instrumentation mode override override applies
fo
Setting B Math1 MinMaxAndOverflow Use local N/A
settings
Math2 MinMaxAndOverflow Double All numeric types
Setting C Math1 MinMaxAndOverflow Double All numeric types
Math2 MinMaxAndOverflow Use local N/A
settings

2 In the Manage shortcuts pane, add Setting B and Setting C to the list
of buttons to display in the Fixed-Point Tool.

Running the Model to Test Subsystem Math1 Settings

Simulate with original fixed-point settings on Math1 while overriding the
fixed-point settings with doubles on Math2.

1 In the Fixed-Point Tool Model Hierarchy pane, select
ex_fixedpoint_debug.

2 In the Shortcuts to set up runs pane, click Setting B to override
fixed-point settings on Math2.

3 Click the Simulate button.

The Simulink software simulates the model using the fixed-point
instrumentation and data type settings specified in Setting B, using
fixed-point settings for Math1 and overriding the fixed-point settings for
Math2. No overflows occur, which indicates that the settings on Math1 are
not causing the overflows.
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Running the Model to Test Subsystem Math2 Settings

Simulate with original fixed-point settings on Math2 while overriding the
fixed-point settings with doubles on Mathi.

1 In the Fixed-Point Tool Model Hierarchy pane, select
ex_fixedpoint_debug.

2 In the Shortcuts to set up runs pane, click Setting C to override the
fixed-point settings on Math1.

3 Click the Simulate button.

The Simulink software simulates the model using the fixed-point
instrumentation and data type settings specified in Setting C, using
fixed-point settings for Math2 and overriding the fixed-point settings for
Math1. Overflows occur in run Setting C, indicating that the settings
on Math2 are causing the overflows.

Simulating Using a Different Input Stimulus

Simulate the model with a different input using the original fixed-point
settings on subsystems Math1 and Math2. Because you set up a shortcut for
this initial set up, you can easily configure the model before rerunning the
simulation. Before simulating, select to merge the simulation results so that
the tool gathers the simulation range for both inputs.

1 In the Data collection pane, select Merge instrumentation results
from multiple simulations.

2 In the ex_fixedpoint_debug model, double-click the Manual Switch block
to select Chirp Signali as the input to the Gain block.

3 In the Fixed-Point Tool Model Hierarchy pane, select
ex_fixedpoint_debug and simulate using the original fixed-point settings
for Math1 and Math2.

a In the Shortcuts to set up runs pane, click Setting A.
b Click the Simulate button.

The Simulink software simulates the model using the fixed-point
instrumentation and data type settings specified in Setting A.



Debugging a Fixed-Point Model

Afterward, the Fixed-Point Tool displays in its Contents pane the
simulation results for each block that logged fixed-point data. The tool
stores the results in the run named Setting A.

Tip In the Fixed-Point Tool Contents pane, click Run to sort the
results in this column.

Debugging with the New Input
1 Simulate with original fixed-point settings on Math1 while overriding the
fixed-point settings with doubles on Math2.

a In the Fixed-Point Tool Model Hierarchy pane, select
ex_fixedpoint_debug.

b In the Shortcuts to set up runs pane, click Setting B.
¢ Click the Start button.

No overflows occur, which indicates that the settings on Math1 are not
causing the overflows.

2 Finally, simulate with original fixed-point settings on Math2 while
overriding the fixed-point settings with doubles on Math1.

a In the Fixed-Point Tool Model Hierarchy pane, select
ex_fixedpoint_debug.

b In the Shortcuts to set up runs pane, click Setting C.
¢ Click the Start button.

Overflows occur, which indicates that the fixed-point settings on Math2
are causing the overflows. Next, use the Fixed-Point Tool to propose
new data types for this subsystem.

Proposing Fraction Lengths for Math2 Based on
Simulation Results

1 In the Fixed-Point Tool Model Hierarchy pane, select Math2.
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2 In the Automatic data typing for selected system pane, click the
Propose fraction lengths button.

3 In the Propose Data Types dialog box, select Setting B as the run to use
for proposing data types and click OK. This run simulated Math2 with
double override to obtain the ’ideal’ behavior of the subsystem based on the
simulation results for both input stimuli.

The Fixed-Point Tool proposes new fixed-point data types for the objects in
subsystem Math2 to avoid numerical issues such as overflows.

4 In the Contents pane ProposedDT column, examine the proposed data
types for the objects in Math2. The tool proposed new fixed-point data types
with reduced precision for the Add1 block Output and Accumulator.

5 Because the Fixed-Point Tool marked all the proposed results with a green
icon to indicate that the proposed data types pose no issues for these
objects, accept the proposals.

In the Automatic data typing for selected system pane, click the
Apply accepted fraction lengths button.

Verifying the New Settings

Verify that the new settings do not cause any numerical problems by
simulating the model using local settings for subsystems Math1 and Math2 and
logging the results. Use shortcut Setting A that you set up for these settings.

1 In the Shortcuts to set up runs pane, click Setting A.

2 In the Data collection pane, set Store results in run to Setting A2 and
click Apply so that the Fixed-Point Tool does not overwrite the previous
results for this shortcut.

3 Click the Simulate button.

The Simulink software simulates the model using the new fixed-point
settings. Afterward, the Fixed-Point Tool displays the simulation results
in run Setting A2. No overflows or saturations occur indicating that the
model can now handle the full input range.
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® “Learning Objectives” on page 7-2

e “Model Description” on page 7-4

e “Before You Begin” on page 7-7

e “Tutorial Steps” on page 7-8

e “Key Points to Remember” on page 7-28
e “Where to Learn More” on page 7-29
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Learning Objectives
In this tutorial, you learn how to:

¢ Convert a floating-point system to an equivalent fixed-point representation.

This example demonstrates the recommended workflow for conversion
when using proposing fraction lengths based on simulation data.

Use the Fixed-Point Advisor to prepare your model for conversion.

The Fixed-Point Advisor provides a set of tasks to help you convert a
floating-point system to fixed point.

You use the Fixed-Point Advisor to:

Set model-wide configuration options

Set block-specific dialog parameters

Check the model against fixed-point guidelines.
Identify unsupported blocks.

Remove output data type inheritance from blocks that use floating-point
inheritance.

Promote simulation minimum and maximum values to design minimum
and maximum values. This capability is useful if you want to derive
ranges for objects in the model and you have not specified design
ranges but you have simulated the model with inputs that cover the
full intended operating range. For more information, see “Specify block
minimum and maximum values” on page 12-33.

Use the Fixed-Point Tool to propose scaling.

The Fixed-Point Tool automates the task of specifying scaling for
fixed-point data types in a system. In this example, the tool collects range
data for model objects, either from design minimum and maximum values
that you specify explicitly for signals and parameters, or from logged
minimum and maximum values that occur during simulation. Based on
these values, the tool proposes fixed-point scaling that maximizes precision
and covers the range. The tool allows you to review the scaling proposals
and then apply them selectively to objects in your model.

¢ Handle floating-point inheritance blocks during conversion.
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For floating-point inheritance blocks when inputs are floating point, all
internal and output data types are floating point. The model in this tutorial
uses a Discrete Filter block, which is a floating-point inheritance block.
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Model Description

In this section...

“Model Overview” on page 7-4

“Model Set Up” on page 7-5

Model Overview
This tutorial uses the ex_fixed_point_workflow model.
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The model consists of a Source, a Controller Subsystem that you want to
convert to fixed point, and a Scope to visualize the subsystem outputs. This
method is how you configure a model to determine the effect of fixed-point
data types on a system. Using this approach, you convert only the subsystem
because this is the system of interest. There is no need to convert the Source
or Scope to fixed point.

This configuration allows you to modify the inputs and collect simulation data
for multiple stimuli. You can then examine the behavior of the subsystem
with different input ranges and scale your fixed-point data types to provide
maximum precision while accommodating the full simulation range.
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Model Set Up

The model consists of the following blocks and subsystem.

Source

¢ Repeating table Source

A Repeating Sequence (Repeating Table) block provides the first input to
the Controller Subsystem and periodically repeats the sequence of data
specified in the mask.

e Rate Transition

A Rate Transition block outputs data from the Repeating table Source
block at a different rate to the input.

* Sine Wave Source
A Sine Wave block provides the second input to the Controller Subsystem.

Initially, the amplitude of the Sine Wave block is 1. Later, you modify the
amplitude to change the input range of the system.

¢ Conversionl and Conversion2

These two Conversion blocks are set up so that the real-world values of
their input and output are equal.

Controller Subsystem
The Controller Subsystem consists of:

¢ Discrete Filter

The Discrete Filter block filters the Repeating table Source signal. The
Discrete Filter is a floating-point inheritance block. For floating-point
inheritance blocks, when inputs are floating-point, all internal and output
data types are floating point.

e Chart

The Chart consists of a Stateflow Chart block which converts the Sine
Wave input to a positive output and multiplies it by 3.

¢ Lookup Table for Chart
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The Lookup Table for Chart block is the first of two identical n-D Lookup
Table blocks. This block receives the output from the Chart and, at each
breakpoint, outputs the input multiplied by 10.

¢ (Gain
The Gain block multiplies the Sine Wave input by -3.
* Lookup Table for Gain

The Lookup Table for Gain block is a n-D Lookup Table block. It receives
the output from the Gain block and, at each breakpoint, outputs its input
multiplied by 10.

¢ Sum for Chart

This Sum block adds the outputs from the Discrete Filter and Lookup Table
for Chart blocks and outputs the result to the Scope block.

¢ Sum for Gain

This Sum block adds the outputs from the Discrete Filter and Lookup Table
for Gain blocks and outputs the result to the Scope block.

Scope

* Scope

The model includes a Scope block that displays the Controller Subsystem
output signals.
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Before You Begin

This tutorial demonstrates the recommended workflow for converting a
floating-point system to fixed point using design and simulation data. It
shows you how to use the Fixed-Point Advisor to prepare a floating-point
subsystem for conversion to an equivalent fixed-point representation, and
then how to use the Fixed-Point Tool to propose the fixed-point data types
in the subsystem.

The tutorial uses the following recommended workflow:

1 “Prepare Floating-Point Model for Conversion to Fixed Point” on page 7-8.

Step through the Fixed-Point Advisor tasks that prepare the floating-point
subsystem for conversion to an equivalent fixed-point representation.

2 “Propose Data Types” on page 7-16.

Propose scaling based on the simulation results. Examine the results to
resolve any conflicts and to verify that you want to accept the proposed
data type for each result.

3 “Apply Scaling” on page 7-19.

Write the proposed data types to the model. Perform the automatic scaling
procedure, which uses the double-precision simulation results to propose
fixed-point scaling for appropriately configured blocks. The Fixed-Point
Tool allows you to accept and apply the scaling proposals selectively.

4 “Verify Fixed-Point Settings” on page 7-19.

Simulate the model again using the fixed-point settings. Compare the ideal
results for the double-precision run with the fixed-point results.

5 Test the fixed-point settings with a different input stimulus and, if
necessary, propose new data types to accommodate the simulation range
for this input.

7-7



7 Tutorial: Conversion to Fixed Point Workflow

Tutorial Steps

In this section...

“Open the Model” on page 7-8

“Prepare Floating-Point Model for Conversion to Fixed Point” on page 7-8
“Propose Data Types” on page 7-16

“Apply Scaling” on page 7-19

“Verify Fixed-Point Settings” on page 7-19

“Test Fixed-Point Settings With New Input Data” on page 7-21

“Gather a Floating-Point Benchmark” on page 7-23

“Propose Data Types for the New Input” on page 7-24

“Apply the New Fixed-Point Data Types” on page 7-24

“Verify New Fixed-Point Settings” on page 7-25

“Prepare for Code Generation” on page 7-26

Open the Model

Open the ex_fixed point workflow model. At the MATLAB command line,
enter:

run(docpath(fullfile(docroot, 'toolbox', 'fixpoint', 'examples', 'ex_fixed_point_workflow.mdl')))

Prepare Floating-Point Model for Conversion to Fixed
Point

The Fixed-Point Advisor provides a set of tasks that help you prepare a
floating-point model or subsystem for conversion to an equivalent fixed-point
representation. After preparing your model, you use the Fixed-Point Tool to
perform the fixed-point conversion.

In this part of the tutorial, you use the Fixed-Point Advisor to prepare the
Controller Subsystem in the ex_fixed_point_workflow model for conversion.
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Open the Fixed-Point Advisor

1 Intheex_fixed_point_workflow model menu, select Tools > Fixed-Point
Tool.

2 In the Fixed-Point Tool:
a In the Model Hierarchy pane, select the Controller Subsystem.

b In the Fixed-point preparation for selected system pane, click the
Fixed-Point Advisor button.

You run the Fixed-Point Advisor on the ex_fixed_point_workflow
Controller Subsystem because this is the system of interest. There is no
need to convert the system inputs or the display to fixed point.

Prepare Model for Conversion

1 In the Fixed-Point Advisor left pane, expand the Prepare Model for
Conversion folder to view the tasks. For the purpose of this tutorial, run
the tasks in the this folder one at a time. Select Verify model simulation
settings and, in the right pane, select Run this task.

This task validates that model simulation settings allow signal logging and
disables data type override in the model and for fi objects or embedded
numeric data types in your model or workspace. These settings facilitate
conversion to fixed point in later tasks.

A waitbar appears while the task runs. When the run is complete, the
result shows that the task passed.

2 Select and run Verify update diagram status.

Verify update diagram status runs. Your model must be able to
successfully update diagram to run the checks in the Fixed-Point Advisor.

The task passes.

3 Select and run Address unsupported blocks. This task identifies blocks
that do not support fixed-point data types.
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The task passes because the subsystem contains no blocks that do not
support fixed-point data.

Select and run Set up signal logging. Prior to simulation, you must
specify at least one signal for the Fixed-Point Advisor to use for analysis
and comparison in downstream checks. You should log, at minimum, the
unique input and output signals.

The task generates a warning because signal logging is not specified for
any signals.

Fix the warning using the Model Advisor Result Explorer:
a Click the Explore Result button.

The Model Advisor Result Explorer opens.

b In the middle pane, select each signal you want to log and, next to the
signal, select the corresponding EnableLogging check box.

For this tutorial, log these signals:
® Lookup Table for Gain
® Lookup Table for Chart
® Chart
® Discrete Filter
¢ Close the Model Advisor Result Explorer.
d In the Fixed-Point Advisor window, click Run This Task.

The task passes because signal logging is now enabled for at least one
signal.

6 Select and run Create simulation reference data.

The Fixed-Point Advisor simulates the model using the current solver
settings, and creates and archives reference signal data in a run named
FPA Reference to use for analysis and comparison in later conversion
tasks. This task also validates that model simulation settings allow signal
logging and that the Fixed-point instrumentation mode is set to
Minimums, maximums and overflows.
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The Fixed-Point Advisor issues a warning and provides information in
the Analysis Result box that logging simulation minimum and maximum
values failed.

Logging failed because the Fixed-point instrumentation mode is Use
local settings, but the recommended setting is Minimums, maximums
and overflows.

7 To fix the failure, in the Action pane, click Modify All.

The Fixed-Point Advisor configures the model to the settings recommended
in the Analysis Result pane. The Action pane displays a table of changes

showing that the Fixed-point instrumentation mode is now Minimums,

maximums and overflows

8 Click Run This Task.

Running the task after using the Modify All action verifies that you made
the necessary changes. The Analysis Result pane updates to display a
passed result and information about why the task passed.

Tip You can view the reference run data in the Fixed-Point Tool Contents
pane in the run named FPA_Reference.

9 In the Verify Fixed-Point Conversion Guidelines folder, select and run
Check model configuration data validity diagnostic parameters
settings. This task verifies that the Configuration Parameters >
Diagnostics > Data Validity > Parameters options are all set to
warning. If these options are set to error, the model update diagram
action fails in downstream checks.

The task passes because none of these options are set to error.

10 Select and run Implement logic signals as Boolean data. This task
verifies that Configuration Parameters > Optimization > Implement
logic signals as Boolean data is selected. If it is cleared, the code
generated in downstream checks is not optimized.

The task passes.
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12

13

14

15

Select and run Check for proper bus usage. This task identifies:
e Mux blocks that are bus creators

® Bus signals that the top-level model treats as vectors

Note This is a Simulink check. For more information, see “Check for
proper bus usage” in the Simulink documentation.

The task runs and generates a warning because this check works only
from top-level models and you are running from the subsystem. Because
this model uses no buses, ignore this warning. For models containing
buses, you must run the Fixed-Point Advisor from the top-level model to
perform this check.

Select and run Simulation range checking. This tasks verifies that
the Configuration Parameters > Diagnostics > Simulation range
checking option is not set to none.

The task generates a warning because the Simulation range checking
option is none.

To fix the warning, in the Action box, click Modify All.

The Fixed-Point Advisor sets the Simulation range checking option to
warning.

Rerun the task.

The task now passes because the Simulation range checking option is
correct.

Select and run Check for implicit signal resolution. This task checks
for models that use implicit signal resolution.

The task fails because implicit signal resolution is enabled.

16 To fix the failure, in the Action box, click Modify All.

The Fixed-Point Advisor sets the Signal resolution option to Explicit
only.
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17 Rerun the task.

The task now passes.

You have completed all the tasks for the Prepare Model for Conversion
folder. At this point, you can review the results report found at the folder
level, or continue to the next folder.

Prepare for Data Typing and Scaling

This folder contains tasks that set the block configuration options and

set output minimum and maximum values for blocks. The block settings
from this task simplify the initial scaling. Later tasks set optimal block
configuration. The tasks in this folder prepare the model for automatic data
typing in the Fixed-Point Tool.

1 For the purpose of this tutorial, run the tasks in the Prepare for Data
Typing and Scaling folder one at a time.

Open the Prepare for Data Typing and Scaling folder then select
and run Review locked data type settings. This task identifies blocks
that have their data type settings locked down which excludes them for
autoscaling.

This task passes because the model contains no blocks with locked scaling.

2 Select and run Remove output data type inheritance. This task
identifies blocks that have an inherited output signal data type that might
lead to data type propagation errors.

This task fails because there are floating-point inheritance blocks in

the model. For floating-point inheritance blocks, when inputs are
floating-point, all internal and output data types are floating point.
Therefore, you must specify an input parameter data type for these blocks.

3 In the Fixed-Point Advisor Input Parameters pane, set Data type for
blocks with floating-point inheritance to int16, and rerun the task.

The task fails and the Fixed-Point Advisor provides information about the
failure in the Analysis Result box. The Fixed-Point Advisor recommends
that you set:
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¢ The input data type of the Discrete Filter block, which is a floating-point
inheritance block, to a fixed-point data type to avoid floating-point
inheritance.

® The output data type of all the other blocks that currently have their
output data type set by inheritance rules to the compiled (current
propagated) data type.

Tip Review the recommended data types prior to accepting them.

4 Fix the failure using the Modify All button to configure the output data
types to the recommended values.

The Action Result box displays:

® A table showing the previous and current data types for all the
floating-point inheritance blocks.

® A table showing the previous and current data types for blocks that use
other types of inheritance.

5 Rerun the task.
The task passes.

6 Select and run Relax input data type settings. This task identifies
blocks with input data type constraints that might cause data type
propagation issues.

The task passes because the model contains no blocks that have inherited
input data types.

7 Select and run Verify Stateflow charts have strong data typing with
Simulink. This task verifies that the configuration of all Stateflow charts
ensures strong data typing with Simulink I/0.

The task passes because the configuration of the Stateflow chart in the
subsystem is correct.
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9

10

12

13

Select and run Remove redundant specification between signal
objects and blocks. This task identifies and removes redundant data
type specification originating from blocks and Simulink signal objects.

The task passes because the model contains no resolved Simulink signal
objects.

Select and run Verify hardware selection. This task identifies the
hardware device information in the Hardware Implementation pane of
the Configuration Parameters dialog box. It also checks the default data
type selected for floating-point signals in the model.

The task fails because the default data type for all floating-point signals

1s set to Remain floating-point. Because the target hardware is an
embedded processor, the Fixed-Point Advisor recommends that you set this
value to the hardware integer used by the embedded hardware.

To fix the failure, in the Input Parameters pane, set Default data type
of all floating-point signals to Same as embedded hardware integer.

Rerun the task.
The task passes.

Select and run Specify block minimum and maximum values. Ideally,
you should specify block output and parameter minimum and maximum
values for, at minimum, the Inport blocks in the system. You can specify
the minimum and maximum values for any block in this step. Typically,
you determine these values during the design process based on the system
you are creating.

The Fixed-Point Advisor warns you that you have not specified any
minimum and maximum values.

Fix the warning by specifying minimum and maximum values for Inport
blocks:

a Click the Explore Result button.
The Model Advisor Result Explorer opens, showing that the Inport

blocks, In1 and In2, do not have output minimum and maximum values
specified.

7-15



7 Tutorial: Conversion to Fixed Point Workflow

7-16

b In the center pane, select In1. This block receives the output from
Repeating table Source, which has a minimum value of 10 and a
maximum value of 20. Therefore, set OutMin to 10 and set OutMax
to 20 as follows:

i In the OutMin column for In1, select [] and replace with 10.
ii In the OutMax column for In1, select [ ] and replace with 20.

¢ Select In2. This block receives the output from Sine Wave block, which
has a minimum value of -1 and a maximum value of 1. Therefore, set
OutMin to -1 and set OutMax to 1.

d Close the Model Advisor Result Explorer.

e In the Fixed-Point Advisor, rerun the task.

The task passes because you specified minimum and maximum values
for all Inport blocks.

The tool advises you to specify minimum and maximum values for all
blocks if possible. For the purpose of this tutorial, do not specify other
minimum and maximum values for other blocks.

You have completed all tasks in the Prepare for Data Typing and Scaling
folder. At this point, you can review the results report found at the folder
level, or continue to the next folder.

Return to Fixed-Point Tool to Perform Data Typing and Scaling

Select and run this task to close the Fixed-Point Advisor and return to the
Fixed-Point Tool.

Propose Data Types

Use the Fixed-Point Tool to propose fixed-point data types for appropriately
configured blocks based on the double-precision simulation results stored in
the simulation reference run that the Fixed-Point Advisor created. These
results are stored in the run named FPA_Reference. You can view the
results in the Fixed-Point Tool Contents pane.

The tool proposes fixed-point data types and scaling based on the ranges of
the Repeating table Source and Sine Wave inputs. You can then use the tool
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to accept and apply the proposed data types selectively. In this example, you
propose fraction lengths for the specified word lengths.

1 In the Fixed-Point Tool, click the Propose fraction lengths button O

The Fixed-Point Tool analyzes the scaling of all fixed-point blocks whose:

¢ Lock output data type setting against changes by the fixed-point
tools parameter is not selected.

¢ Output data type parameter specifies a generalized fixed-point
number.

¢ Data types are not inherited.
The Fixed-Point Tool updates the results in the Contents pane.

2 In the Fixed-Point Tool, set the Column View to Autoscaling with
Simulation Min/Max View to display information relevant to the proposal.
The tool displays the proposed scaling in the ProposedDT column in the
Contents pane. The tool does not propose data types for objects with
inherited data types.

To accommodate the full simulation range, the Fixed-Point Tool proposes
scaling for blocks that do not have inherited data types. By default, it
selects the Accept check box for these signals because the scaling proposal
differs from the object’s current scaling. If you apply scaling, the tool will
apply the proposed scaling to these signals. For more information, see
“Applying Proposed Data Types” on page 9-27.
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| Contents of: Controller Subsystem {mma)

Column View: |Autoscaling with Simulation Min/Max View « | Show Details

Mame . Run SimDT Accept ProposedDT  SpecifiedDT
El% Chart FP4_Reference |:|
I3 chart/ Demux FP4_Reference =
[ Chart/fixout/fiin FPA_Reference findt(1,32,29)
[iﬂ Chart/fixout/out FPA_Reference fixdtil,32,25)
lﬂ Chart/input FP4_Reference =
iﬂ Chart/output FPA_Reference findt(l,32,29)
I3 conversion FPA4_Reference findt(l,32,29)
I conversionl FPA_Reference findt(l,32,24)
IE Discrete Filter : Denominator accumulator FP4_Reference |:|
IE Discrete Filter : Denominator product output FPA_Reference |:|
IE Discrete Filter : Numerator accumulator FP4_Reference |:|
IE Diiscrete Filter : Numerator product output FP4_Reference |:|
IS Diiscrete Filter : Output FP4_Reference fixdt(l,16,158)
I3} Discrete Filter : States FP4_Reference =
& Gain FPA_Reference findt(l,32,29)
IE Gain : Gain FP4_Reference |:|
E FP4_Reference findt(1,32,26)
I 2 FP4_Reference fisedt(1,32,30}
1% Lookup Table for Chart FPA4_Reference findt(l,32,26)
IE Lookup Table for Chart: BreakpointsForDimensionl FPA_Reference |:|
IE Lookup Table for Chart: Intermediate Results FP4_Reference |:|
I3} Lookup Table for Chart : Table FP4_Reference =
1% Lookup Table for Gain FPA_Reference fixdt(l,32,26)
IE Lookup Table for Gain : BreakpointsForDimensionl  FPA_Reference |:|
IE Lookup Table for Gain : Intermediate Results FP4_Reference |:|
I3 Lookup Table for Gain : Table FP4_Reference =
IE Sum @ Accumulator FPA_Reference |:|
1% sum: output FPA_Reference findt(l,32,26)
IE Suml : Accumulator FP4_Reference |:|
I3 sumi: output FP4_Reference fisdt(1,32,26)

3 Examine the results to resolve any conflicts and to ensure that you want
to accept the proposed data type for each result.

In the Fixed-Point Tool toolbar, select Show > Conflicts with proposed
data types.

The Fixed-Point Tool detected no conflicts.
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Tip If the tool does detect conflicts, you must resolve these before applying
scaling. For more information, see “Examining Results to Resolve
Conflicts” on page 9-22.

Now that you have reviewed the results and ensured that there are no issues,
you are ready to apply the proposed scaling to the model, as described in
“Apply Scaling” on page 7-19.
Apply Scaling
1 Click the Apply accepted fraction lengths button to write the proposed
data types to the model. 2]
The Fixed-Point Tool applies the scaling proposals to the subsystem blocks.

2 In the Fixed-Point Tool toolbar, select Show > All results.

The tool has set all the specified data types to the proposed types.

You are now ready to check that the new scaling is acceptable, as described in
“Verify Fixed-Point Settings” on page 7-19.

Verify Fixed-Point Settings
Next, you simulate again using the new fixed-point settings. You then use

the Fixed-Point Tool plotting capabilities to compare the results from the
floating-point FPA_Reference run with the fixed-point results.

1 In the Fixed-Point Tool Model Hierarchy pane, select the Controller
Subsystem.

2 In the Data collection pane, set Store results in run to
Initial_ fixed_point. You specify a new run name to prevent the tool
from overwriting the results that you want to retain in the FPA_Reference
run.

3 Click the Fixed-Point Tool Simulation button @ to run the simulation.
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The Simulink software simulates using the new scaling that you applied in
the previous step. Afterward, the Fixed-Point Tool displays in its Contents
pane information about blocks that logged fixed-point data. The SimDT
(simulation data type) column for the active run shows that the Controller
Subsystem blocks use fixed-point data types with the new scaling.

Tip In the Contents pane, click the Run column heading to sort the runs.

Examine the results to verify that there are no overflows or saturations.

In the Fixed-Point Tool Model Hierarchy pane, select the Controller
Subsystem. In the Contents pane, select the Discrete Filter:
Output that corresponds to the FPA_Reference run, and then click the
Difference Plot of Signal button.

The Fixed-Point Tool plots the signal for the FPA_Reference and
Initial fixed_point runs, as well as their difference. The difference plot
shows that the floating-point signal and the fixed-point signal are almost
identical, the difference is on the order of 10" -5.
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6 Optionally, you can zoom in to view the steady-state region with greater
detail. From the Tools menu of the figure window, select Zoom In and
then drag the pointer to draw a box around the area you want to view
more closely.

Now you are ready to test the fixed-point settings with new the input data,
as described in “Test Fixed-Point Settings With New Input Data” on page
7-21.

Test Fixed-Point Settings With New Input Data

You have successfully used the Fixed-Point tool to propose fixed-point data
types for your model. In the previous step, you saw that the numerical
results for the double-precision system and the fixed-point system are very
close. These results indicate that the fixed-point data types are suitable for
the range of input data that you used. In practice, you might need to run
multiple simulations to cover the entire design range of your system and use
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the results of these simulations to refine the scaling of the fixed-point data
types in your model.

In this part of the tutorial, you continue working on the model. First, you
modify the range of the Sine Wave input and obtain simulation data based
on this new range. Then, you use the Fixed-Point Tool to refine the model
fixed-point settings based on the new simulation data. The Fixed-Point Tool
proposes new data types that can accommodate the new input range.

To change the range of the input data and test the fixed-point settings:

1 In the ex_fixed_point_workflow model, double-click the Sine Wave
Source block.

The Source Block Parameters dialog box opens.
2 In this dialog box, change the Amplitude to 2 and click OK.

3 In the Fixed-Point Tool Model Hierarchy pane , select the Controller
Subsystem.

4 In the Data collection pane, set Store results in run to Input2.

5 Click the Fixed-Point Tool Simulation button @ to run the simulation.

The Simulink software simulates the ex_fixed point workflow model.
The Stateflow debugger reports a data overflow error in the Stateflow chart.

6 In the Stateflow Debugging window, under Error checking options,
clear the Data Range option and close the debugger and the Chart.

This action disables data range error detection and allows the simulation
to run to completion.

7 In the Fixed-Point Tool Model Hierarchy pane, select the Controller
Subsystem.

The Fixed-Point Tool Contents pane displays the simulation results for
each block in the subsystem that logged fixed-point data. The tool stores
the results in the Input2 run.
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In the Input2 run, the tool highlights in red the result for the Gain block,
indicating that there are issues.

8 Examine the result for the Gain block.

The result shows that the Gain block output saturated, which indicates
that the fixed-point data settings for this block are not suitable for the
new input range.

Next, override the fixed-point data types with doubles and simulate the
model again to obtain the ideal behavior of the subsystem, as described in
“Gather a Floating-Point Benchmark” on page 7-23.

Gather a Floating-Point Benchmark

Run the model with a global override of the fixed-point data types using
double-precision numbers to avoid quantization effects. This provides a
floating-point benchmark that represents the ideal output. The Simulink
software logs the signal logging results to the MATLAB workspace. The
Fixed-Point Tool displays the simulation results including minimum and
maximum values that occur during the run.

1 In the Fixed-Point Tool Model Hierarchy pane, select the Controller
Subsystem.

2 In the Settings for selected system pane, set Data type override to
Double.

Using this setting, the Fixed-Point Tool performs a global override of the
fixed-point data types and scaling using double-precision numbers, thus
avoiding quantization effects.

3 In the Data collection pane, set Store results in run to DTO_Input2.

4 Click the Fixed-Point Tool Simulate button @ to run the simulation.

The Fixed-Point Tool highlights any simulation results that have issues,
such as overflows or saturations.

5 In the Contents pane, click the Run column to sort the runs. Verify that
there were no overflows or saturations in the DTO_Input2 run.

7-23



7 Tutorial: Conversion to Fixed Point Workflow

7-24

Propose Data Types for the New Input

Now, use the Fixed-Point Tool to propose fixed-point data types based on
the double-precision simulation results for the new input stored in the
DTO_Input2 run.

1 In the Fixed-Point Tool, click the Propose fraction lengths button °T .
2 In the Propose Data Types dialog box, select DTO_Input2 as the run to
use for proposing data types, and then click OK.

The Fixed-Point Tool proposes new data types for all objects in the model
and updates the results in the Contents pane.

3 In the Fixed-Point Tool, set the Column View to Autoscaling with
Simulation Min/Max View to display information relevant to the proposal.
The tool displays the proposed scaling in the ProposedDT column in the
Contents pane. The tool does not propose data types for objects with
inherited data types.

To accommodate the full simulation range, the Fixed-Point Tool proposes
new scaling with reduced precision for the Chart/output and Gain block
output.

4 Examine the results to resolve any conflicts and to ensure that you want
to accept the proposed data type for each result.

In the Fixed-Point Tool toolbar, select Show > Conflicts with proposed
data types.

The Fixed-Point Tool detected no conflicts, so you are ready to apply the
new data types as described in “Apply the New Fixed-Point Data Types”
on page 7-24.

Apply the New Fixed-Point Data Types

1 Click Apply accepted fraction lengths B9 to write the proposed data
types to the model.

2 In the Apply Data Types dialog box, select DTO_Input2 as the run to use
for applying proposed data types and then click OK.
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3 In the Fixed-Point Tool toolbar, select Show > All results.

The tool has set all the specified data types to the proposed types.

Verify New Fixed-Point Settings

Finally, you simulate again using the new fixed-point settings. You then
use the Fixed-Point Tool plotting capabilities to compare the results for the
initial and final fixed-point settings.

1 In the Fixed-Point Tool Model Hierarchy pane, select the Controller
Subsystem.

2 In the Settings for selected system pane, set Data type override to
Use local settings.

3 In the Data collection pane, set Store results in run to
Final_fixed_point.

4 Click Start to run the simulation.

The Simulink software simulates using the new scaling that you applied in
the previous step and stores the results in the Final fixed point run.

5 Examine the results to verify that there are no overflows or saturations.

6 In the Fixed-Point Tool Model Hierarchy pane , select the Controller
Subsystem. In the Contents pane, select the Discrete Filter: Output
that corresponds to the Initial_fixed_point run, and then click the
Difference Plot of Signal button.

HH

7 In the Difference Plot Selector dialog box, select Final fixed_point,
and then click OK.

The Fixed-Point Tool plots the signal for both runs, as well as their
difference. The difference plot shows that the floating-point signal and

the fixed-point signal are identical.

8 Optionally, you can zoom in to view the steady-state region with greater
detail. From the Tools menu of the figure window, select Zoom In and
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then drag the pointer to draw a box around the area you want to view
more closely.

Prepare for Code Generation

Optionally, use the Simulink Model Advisor to identify model settings that
might lead to nonoptimal results in code generation.

1 From the Simulink Tools menu, select Model Advisor.

2 In the System Selector dialog box, select Controller Subsystem, and
then click OK.

3 In the Model Advisor left pane, expand the By Task node.
4 Expand the Code Generation Efficiency node.

5 Select and run Identify blocks that generate expensive saturation
and rounding code. This task optimizes the code to eliminate
unnecessary saturation and rounding.

The result is a warning because there are settings that can result in
nonoptimized code. The Fixed-Point Advisor identified that:

® The Gain block has the Saturate on integer overflow parameter
selected. This setting can result in unnecessary condition-checking code.

® The integer rounding mode selected for the model is Undefined. This
setting results in inefficient generated code.

6 Fix the warning conditions.
a Click Explore Result to open the Model Advisor Result Explorer.

b Clear the SaturateOnOverflow setting for the Gain block and close
the Model Advisor Result Explorer.

¢ In the Analysis Result box, click the Embedded Hardware properties
link to open the Configuration Parameters dialog box Hardware
Implementation pane.

d Set the Signed integer division rounds to parameter to Zero and
click OK to close the dialog box.

7 Rerun the task.
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The task passes.

8 Select and run Identify questionable fixed-point operations. This
task identifies fixed-point operations that can lead to nonoptimal results.

The task passes.
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Key Points to Remember

Convert subsystems within your model, rather than the entire model. This
practice saves time and avoids unnecessary conversions.

Use the Fixed-Point Advisor to prepare your model for conversion to fixed
point.

Use the Fixed-Point Tool to propose fixed-point data types for your model
or subsystem.

When using the Fixed-Point Advisor, consider saving a restore point before
applying recommendations.

A restore point provides a fallback in case the recommended scaling causes
subsequent update diagram failure. If you do not save a restore point and
you encounter an update diagram failure, you must start the conversion
from the beginning.

Provide as much design minimum and maximum information as possible
before starting the conversion to fixed point.

Providing this information enables the fixed-point tools to choose
fixed-point data types that maximize precision and cover the range.

Specify minimum and maximum values for signals and parameters in the
model for:

= Inport and Outport blocks
= Block outputs

= The interface between MATLAB Function and Stateflow Chart blocks
and the Simulink model to ensure strong data typing

= Simulink.Signal objects

Ensure that you simulate the system using the full range of inputs.

If you use simulation minimum and maximum values to scale fixed-point
data types, the tools provide meaningful results when exercising the full
range of values over which your design is meant to run.
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Where to Learn More

To learn more about...

See...

Fixed-Point Advisor capabilities

Chapter 12, “Fixed-Point Advisor Reference”

Best practices for using the Fixed-Point Advisor

“Best Practices for Using the Fixed-Point
Advisor” on page 5-2

Using restore points in the Fixed-Point Advisor

“Restore Points” on page 5-10

Fixed-Point Tool capabilities

“Overview of the Fixed-Point Tool” on page 6-2
fxptdlg

Best practices for using the Fixed-Point Tool

“Best Practices for Using the Fixed-Point Tool
to Propose Data Types for Your Simulink
Model” on page 9-5

Using the Fixed-Point Tool to merge multiple
simulation results

“Proposing Data Types For a Model Using
Results from Multiple Simulations” on page
9-73
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Tutorial: Producing Lookup
Table Data

® “Overview” on page 8-2

* “Worst-Case Error for a Lookup Table” on page 8-3

e “Creating Lookup Tables for a Sine Function” on page 8-6

¢ “Summary for Using Lookup Table Approximation Functions” on page 8-21

e “Effects of Spacing on Speed, Error, and Memory Usage” on page 8-22
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Overview

A function lookup table is a method by which you can approximate a function
by a table with a finite number of points (X,Y). Function lookup tables

are essential to many fixed-point applications. The function you want to
approximate is called the ideal function. The X values of the lookup table
are called the breakpoints. You approximate the value of the ideal function
at a point by linearly interpolating between the two breakpoints closest

to the point.

In creating the points for a function lookup table, you generally want to
achieve one or both of the following goals:

e Minimize the worst-case error for a specified maximum number of
breakpoints

®* Minimize the number of breakpoints for a specified maximum allowed error

This tutorial shows you how to create function lookup tables using the
function fixpt_look1_func_approx. You can optimize the lookup table to
minimize the number of data points, the error, or both. You can also restrict
the spacing of the breakpoints to be even or even powers of two to speed up
computations using the table.

This tutorial also explains how to use the function fixpt_look1 func_plot
to find the worst-case error of a lookup table and plot the errors at all points.
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Worst-Case Error for a Lookup Table

In this section...
“What Is Worst-Case Error for a Lookup Table?” on page 8-3

“Example: Square Root Function” on page 8-3

What Is Worst-Case Error for a Lookup Table?

The error at any point of a function lookup table is the absolute value of the
difference between the ideal function at the point and the corresponding Y
value found by linearly interpolating between the adjacent breakpoints. The
worst-case error, or maximum absolute error, of a lookup table is the maximum
absolute value of all errors in the interval containing the breakpoints.

For example, if the ideal function is the square root, and the breakpoints of
the lookup table are 0, 0.25, and 1, then in a perfect implementation of the
lookup table, the worst-case error is 1/8 = 0.125, which occurs at the point 1/16
= 0.0625. In practice, the error could be greater, depending on the fixed-point
quantization and other factors.

The section that follows demonstrates how to use the function
fixpt_look1_func_plot to find the worst-case error of a lookup table for the
square root function.

Example: Square Root Function

This example shows how to use the function fixpt_look1_func_plot to find
the maximum absolute error for the simple lookup table whose breakpoints
are 0, 0.25, and 1. The corresponding Y data points of the lookup table, which
you find by taking the square roots of the breakpoints, are 0, 0.5, and 1.

To use the function fixpt_looki_func_plot, you need to define its
parameters first. To do so, type the following at the MATLAB prompt:

funcstr = 'sqrt(x)'; %Define the square root function

xdata = [0;.25;1]; %Set the breakpoints

ydata sqrt(xdata); %Find the square root of the breakpoints
xmin = 0; %Set the minimum breakpoint
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xmax = 1; %Set the maximum breakpoint

xdt = ufix(16); %Set the x data type

xscale = 27-16; %Set the x data scaling

ydt = sfix(16); %Set the y data type

yscale = 2"-14; %Set the y data scaling
rndmeth = 'Floor'; %Set the rounding method

Next, type

errworst = fixpt_looki1_func_plot(xdata,ydata,funcstr,
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth)

This returns the worst-case error of the lookup table as the variable errworst:

errworst =
0.1250

It also generates the plots shown in the following figure. The upper box
(Outputs) displays a plot of the square root function with a plot of the
fixed-point lookup approximation underneath. The approximation is found by
linear interpolation between the breakpoints. The lower box (Absolute Error)
displays the errors at all points in the interval from 0 to 1. Notice that the
maximum absolute error occurs at 0.0625. The error at the breakpoints is 0.
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Table uses 3 unevenly spaced data points.

The input is Unsigned 16 Bit with 16 bits right of binary point

The output is Signed 16 Bit with 14 bits right of binary point

Maximum Absolute Error 012503 log2{MAE) = -2.9996  MAE/NEBIt = 2048 5
The least significant 12 bits of the output can be inaccurate.

The most significant nonsign bit of the output is used.

The remaining 3 nonsign bits of the output are used and always accurate.

The sign bit of the output is not used.

The rounding mode is to Floor
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Creating Lookup Tables for a Sine Function

In this section...

“Introduction” on page 8-6

“Parameters for fixpt_look1_func_approx” on page 8-6

“Setting Function Parameters for the Lookup Table” on page 8-8
“Example: Using errmax with Unrestricted Spacing” on page 8-8
“Example: Using nptsmax with Unrestricted Spacing” on page 8-11
“Example: Using errmax with Even Spacing” on page 8-13
“Example: Using nptsmax with Even Spacing” on page 8-14
“Example: Using errmax with Power of Two Spacing” on page 8-15
“Example: Using nptsmax with Power of Two Spacing” on page 8-17

“Specifying Both errmax and nptsmax” on page 8-18

“Comparison of Example Results” on page 8-19

Introduction

The sections that follow explain how to use the function
fixpt_look1_func_approx to create lookup tables. It gives

examples that show how to create lookup tables for the function sin(2mx) on
the interval from 0 to 0.25.

Parameters for fixpt_look1_func_approx
To use the function fixpt_look1_func_approx, you must first define its

parameters. The required parameters for the function are
e funcstr — Ideal function

¢ xmin — Minimum input of interest

¢ xmax — Maximum input of interest

® xdt — x data type

® xscale — x data scaling
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e ydt — y data type
® yscale — y data scaling

®* rndmeth — Rounding method
In addition there are three optional parameters:

* errmax — Maximum allowed error of the lookup table
® nptsmax — Maximum number of points of the lookup table

® spacing — Spacing allowed between breakpoints

You must use at least one of the parameters errmax and nptsmax. The next
section, “Setting Function Parameters for the Lookup Table” on page 8-8,
gives typical settings for these parameters.

Using Only errmax

If you use only the errmax parameter, without nptsmax, the function creates a
lookup table with the fewest points, for which the worst-case error is at most
errmax. See “Example: Using errmax with Unrestricted Spacing” on page 8-8.

Using Only nptsmax

If you use only the nptsmax parameter without errmax, the function creates a
lookup table with at most nptsmax points, which has the smallest worse case
error. See “Example: Using nptsmax with Unrestricted Spacing” on page 8-11.

The section “Specifying Both errmax and nptsmax” on page 8-18 describes
how the function behaves when you specify both errmax and nptsmax.

Spacing
You can use the optional spacing parameter to restrict the spacing between
breakpoints of the lookup table. The options are

® 'unrestricted' — Default.
e 'even' — Distance between any two adjacent breakpoints is the same.
® 'pow2' — Distance between any two adjacent breakpoints is the same

and the distance is a power of two.

8-7
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The section “Restricting the Spacing” on page 8-12 and the examples that
follow it explain how to use the spacing parameter.

Setting Function Parameters for the Lookup Table

To do the examples in this section, you must first set parameter values for
the fixpt_look1_func_approx function. To do so, type the following at the
MATLAB prompt:

funcstr = 'sin(2*pi*x)'; %Define the sine function
xmin = 0; %Set the minimum input of interest

xmax = 0.25; %Set the maximum input of interest

xdt = ufix(16); %Set the x data type

xscale = 27-16; %Set the x data scaling

ydt = sfix(16); %Set the y data type

yscale = 27-14; %Set the y data scaling

rndmeth = 'Floor'; %Set the rounding method

errmax = 2"-10; %Set the maximum allowed error
nptsmax = 21; %Specify the maximum number of points

If you exit the MATLAB software after typing these commands, you must
retype them before trying any of the other examples in this section.

Example: Using errmax with Unrestricted Spacing

The first example shows how to create a lookup table that has the fewest
data points for a specified worst-case error, with unrestricted spacing. Before
trying the example, enter the same parameter values given in the section
“Setting Function Parameters for the Lookup Table” on page 8-8, if you have
not already done so in this MATLAB session.

You specify the maximum allowed error by typing
errmax = 27-10;

Creating the Lookup Table

To create the lookup table, type

[xdata ydata errworst] = fixpt_look1_func_approx(funcstr,
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[]);
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Note that the nptsmax and spacing parameters are not specified.
The function returns three variables:

® xdata, the vector of breakpoints of the lookup table
® ydata, the vector found by applying ideal function sin(2mx) to xdata

e errworst, which specifies the maximum possible error in the lookup table
The value of errworst is less than or equal to the value of errmax.
You can find the number of X data points by typing

length(xdata)

ans =
16

This means that 16 points are required to approximate sin(2mx) to within the
tolerance specified by errmax.

You can display the maximum error by typing errworst. This returns

errworst =
9.7656e-004

Plotting the Results
You can plot the output of the function fixpt look1_ func_plot by typing

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt,
xscale,ydt,yscale,rndmeth);

The resulting plots are shown.
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Input
Table uses 16 unevenly spaced data points.
The input is Unsigned 16 Bit with 16 bits right of binary paoint
The output is Signed 16 Bit with 14 bits right of binary point
hWlaximurm Absolute Error 0.00097656  log2(MAE) =-10 MAESMBIt = 16
The least significant 4 bits of the output can be inaccurate.
The most significant nonsign bit of the output is used.
The remaining 11 nonsign bits of the output are used and always accurate.
The sign bit of the output is not used.
The rounding mode is to Floar

The upper plot shows the ideal function sin(2mx) and the fixed-point lookup
approximation between the breakpoints. In this example, the ideal function
and the approximation are so close together that the two graphs appear to
coincide. The lower plot displays the errors.

In this example, the Y data points, returned by the function
fixpt_look1_func_approx as ydata, are equal to the ideal function applied
to the points in xdata. However, you can define a different set of values for
ydata after running fixpt_look1_func_plot. This can sometimes reduce
the maximum error.

You can also change the values of xmin and xmax in order to evaluate the
lookup table on a subset of the original interval.
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To find the new maximum error after changing ydata, xmin or xmax, type

errworst = fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax, ...
xdt,xscale,ydt,yscale,rndmeth)

Example: Using nptsmax with Unrestricted Spacing

The next example shows how to create a lookup table that minimizes the
worst-case error for a specified maximum number of data points, with
unrestricted spacing. Before starting the example, enter the same parameter
values given in the section “Setting Function Parameters for the Lookup
Table” on page 8-8, if you have not already done so in this MATLAB session.

Setting the Number of Breakpoints
You specify the number of breakpoints in the lookup table by typing

nptsmax = 21;

Creating the Lookup Table
Next, type

[xdata ydata errworst] = fixpt_look1_func_approx(funcstr,
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax);

The empty brackets, [ ], tell the function to ignore the parameter errmax,
which is not used in this example. Omitting errmax causes the function
fixpt_look1_func_approx to return a lookup table of size specified by
nptsmax, with the smallest worst-case error.

The function returns a vector xdata with 21 points. You can find the
maximum error for this set of points by typing errworst at the MATLAB
prompt. This returns

errworst =

5.1139e-004

Plotting the Results
To plot the lookup table along with the errors, type

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt,
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xscale,ydt,yscale,rndmeth);

The resulting plots are shown.
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Table uses 21 unevenly spaced data points.

The input is Unsigned 16 Bit with 16 bits right of binary paoint

The output is Signed 16 Bit with 14 bits right of binary point

hWlaximurm Absolute Error 0.00051139  log2(MAE) = -10.9333 MAE/yBIit = B.3785

The least significant 4 bits of the output can be inaccurate.

The most significant nonsign bit of the output is used.

The remaining 11 nonsign bits of the output are used and always accurate.

The sign bit of the output is not used.

The rounding mode is to Floar

Restricting the Spacing

In the previous two examples, the function fixpt_look1_func_approx
creates lookup tables with unrestricted spacing between the breakpoints. You
can restrict the spacing to improve the computational efficiency of the lookup
table, using the spacing parameter.

The options for spacing are

® 'unrestricted' — Default.
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e 'even' — Distance between any two adjacent breakpoints is the same.

® 'pow2' — Distance between any two adjacent breakpoints is the same
and is a power of two.

Both power of two and even spacing increase the computational speed of
the lookup table and use less command read-only memory (ROM). However,
specifying either of the spacing restrictions along with errmax usually
requires more data points in the lookup table than does unrestricted spacing
to achieve the same degree of accuracy. The section “Effects of Spacing on
Speed, Error, and Memory Usage” on page 8-22 discusses the tradeoffs
between different spacing options.

Example: Using errmax with Even Spacing

The next example shows how to create a lookup table that has evenly spaced
breakpoints and a specified worst-case error. To try the example, you must
first enter the parameter values given in the section “Setting Function
Parameters for the Lookup Table” on page 8-8, if you have not already done
so in this MATLAB session.

Next, at the MATLAB prompt type

spacing = 'even';
[xdata ydata errworst] = fixpt_look1_func_approx(funcstr,
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[],spacing);

You can find the number of points in the lookup table by typing
length(xdata):

ans =
20

To plot the lookup table along with the errors, type

fixpt_looki_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt,
xscale,ydt,yscale,rndmeth);

This produces the following plots:
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Input
Table uses 20 evenly spaced data points.
The input is Unsigned 16 Bit with 16 bits right of binary paoint
The output is Signed 16 Bit with 14 bits right of binary point
hWlaximurm Absolute Error 0.00092109  log2(MAE) = -10.0844 MAEMBIt = 15.0912
The least significant 4 bits of the output can be inaccurate.
The most significant nonsign bit of the output is not used.
The remaining 10 nonsign bits of the output are used and always accurate.
The sign bit of the output is not used.
The rounding mode is to Floar

Example: Using nptsmax with Even Spacing

The next example shows how to create a lookup table that has evenly spaced
breakpoints and minimizes the worst-case error for a specified maximum
number of points. To try the example, you must first enter the parameter
values given in the section “Setting Function Parameters for the Lookup
Table” on page 8-8, if you have not already done so in this MATLAB session.

Next, at the MATLAB prompt type

spacing = 'even';
[xdata ydata errworst] = fixpt_look1_func_approx(funcstr,
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax,spacing);
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The result requires 21 evenly spaced points to achieve a maximum absolute
error of 2*-10.2209.

To plot the lookup table along with the errors, type

fixpt_looki_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt,
xscale,ydt,yscale,rndmeth);
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Input
Table uses 21 evenly spaced data points.
The input is Unsigned 16 Bit with 16 bits right of binary paoint
The output is Signed 16 Bit with 14 bits right of binary point
hWlaximum Absolute Error 0.00083793 log2(MAE) = -10.2209 MAESMBIt = 13.7287
The least significant 4 bits of the output can be inaccurate.
The most significant nonsign bit of the output is not used.
The remaining 10 nonsign bits of the output are used and always accurate.
The sign bit of the output is not used.
The rounding mode is to Floar

Example: Using errmax with Power of Two Spacing

The next example shows how to construct a lookup table that has power
of two spacing and a specified worst-case error. To try the example, you
must first enter the parameter values given in the section “Setting Function
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Parameters for the Lookup Table” on page 8-8, if you have not already done
so in this MATLAB session.

Next, at the MATLAB prompt type
spacing = 'pow2';
[xdata ydata errworst] = ...

fixpt_looki1_func_approx(funcstr,xmin,
xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[],spacing);

To find out how many points are in the lookup table, type

length(xdata)

ans =
33

This means that 33 points are required to achieve the worst-case error
specified by errmax. To verify that these points are evenly spaced, type

widths = diff(xdata)

This generates a vector whose entries are the differences between consecutive
points in xdata. Every entry of widths is 2°7.

To find the maximum error for the lookup table, type

errworst

errworst =
3.7209e-004

This is less than the value of errmax.

To plot the lookup table data along with the errors, type

fixpt_looki_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt,
xscale,ydt,yscale,rndmeth);

This displays the plots shown.
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Table uses 33 power of 2 spaced data points.

The input is Unsigned 16 Bit with 16 bits right of binary paoint

The output is Signed 16 Bit with 14 bits right of binary point

hWlaximurm Absolute Error 0.00037209  log2(MAE) =-11.3921 MAE/yBIit = 5.0964

The least significant 3 bits of the output can be inaccurate.

The most significant nonsign bit of the output is used.

The remaining 12 nonsign bits of the output are used and always accurate.

The sign bit of the output is not used.

The rounding mode is to Floar

Example: Using nptsmax with Power of Two Spacing

The next example shows how to create a lookup table that has power of two
spacing and minimizes the worst-case error for a specified maximum number
of points. To try the example, you must first enter the parameter values given
in the section “Setting Function Parameters for the Lookup Table” on page
8-8, if you have not already done so in this MATLAB session:

spacing = 'pow2';

[xdata ydata errworst] = fixpt_look1_func_approx(funcstr,
xmin, xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax,spacing);

The result requires 17 points to achieve a maximum absolute error of
2°-9.6267.
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To plot the lookup table along with the errors, type

fixpt_looki_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt,
xscale,ydt,yscale,rndmeth);

This produces the plots shown below:
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Table uses 17 power of 2 spaced data points.
The input is Unsigned 16 Bit with 16 bits right of binary paoint
The output is Signed 16 Bit with 14 bits right of binary point
hWlaximurm Absolute Error 0.0012649  [og2(MAE) = -9.6267 MAE/MBIt = 20,7245
The least significant 5 bits of the output can be inaccurate.
The most significant nonsign bit of the output is used.
The remaining 10 nonsign bits of the output are used and always accurate.
The sign bit of the output is not used.
The rounding mode is to Floar

Specifying Both errmax and nptsmax

If you include both the errmax and the nptsmax parameters, the function
fixpt_look1_func_approx tries to find a lookup table with at most nptsmax
data points, whose worst-case error is at most errmax. If it can find a lookup
table meeting both conditions, it uses the following order of priority for
spacing:
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1 Power of two
2 Even

3 Unrestricted

If the function cannot find any lookup table satisfying both conditions, it
ignores nptsmax and returns a lookup table with unrestricted spacing, whose
worst-case error is at most errmax. In this case, the function behaves the
same as if the nptsmax parameter were omitted.

Using the parameters described in the section “Setting Function Parameters
for the Lookup Table” on page 8-8, the following examples illustrate the
results of using different values for nptsmax when you enter

[xdata ydata errworst] = fixpt_look1_func_approx(funcstr,
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,nptsmax);

The results for three different settings for nptsmax are as follows:

® nptsmax = 33; — The function creates the lookup table with 33 points
having power of two spacing, as in Example 3.

® nptsmax = 21; — Because the errmax and nptsmax conditions cannot be
met with power of two spacing, the function creates the lookup table with
20 points having even spacing, as in Example 5.

® nptsmax = 16; — Because the errmax and nptsmax conditions cannot be
met with either power of two or even spacing, the function creates the
lookup table with 16 points having unrestricted spacing, as in Example 1.

Comparison of Example Results

The following table summarizes the results for the examples. Note that when
you specify errmax, even spacing requires more data points than unrestricted,
and power of two spacing requires more points than even spacing.

Worst-Case Number of
Example Options Spacing Error Points in Table
1 errmax=2"-10 'unrestricted’ 27-10 16
2 nptsmax=21 'unrestricted’ 27-10.933 21
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Worst-Case Number of
Example Options Spacing Error Points in Table
3 errmax=2"-10 ‘even' 27-10.0844 20
4 nptsmax=21 ‘even' 27-10.2209 21
5 errmax=2"-10 "pow2'’ 2”-11.3921 33
6 nptsmax=21 ‘pow2’ 27-9.627 17
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Summary for Using Lookup Table Approximation
Functions

The following steps summarize how to use the lookup table approximation
functions:
1 Define:

a The ideal function to approximate

b The range, xmin to xmax, over which to find X and Y data

¢ The fixed-point implementation: data type, scaling, and rounding
method

d The maximum acceptable error, the maximum number of points, and
the spacing
2 Run the fixpt_look1_func_approx function to generate X and Y data.

3 Use the fixpt_look1_func_plot function to plot the function and error
between the ideal and approximated functions using the selected X and Y
data, and to calculate the error and the number of points used.

4 Vary input criteria, such as errmax, nptsmax, and spacing, to produce sets
of X and Y data that generate functions with varying worst-case error,
number of points required, and spacing.

5 Compare results of the number of points required and maximum absolute
error from various runs to choose the best set of X and Y data.
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Effects of Spacing on Speed, Error, and Memory Usage

In this section...

“Criteria for Comparing Types of Breakpoint Spacing” on page 8-22
“Model That Illustrates Effects of Breakpoint Spacing” on page 8-22
“Data ROM Required for Each Lookup Table” on page 8-23
“Determination of Out-of-Range Inputs” on page 8-24

“How the Lookup Tables Determine Input Location” on page 8-24
“Interpolation for Each Lookup Table” on page 8-26

“Summary of the Effects of Breakpoint Spacing” on page 8-29

Criteria for Comparing Types of Breakpoint Spacing

The sections that follow compare implementations of lookup tables that
use breakpoints whose spacing is uneven, even, and power of two. The
comparison focuses on:

¢ Execution speed of commands

® Rounding error during interpolation

¢ The amount of read-only memory (ROM) for data

¢ The amount of ROM for commands

This comparison is valid only when the breakpoints are not tunable. If the

breakpoints are tunable in the generated code, all three cases generate the

same code. For a summary of the effects of breakpoint spacing on execution

speed, error, and memory usage, see “Summary of the Effects of Breakpoint
Spacing” on page 8-29.

Model That lllustrates Effects of Breakpoint Spacing

This comparison uses the model fxpdemo_approx_sin. Three fixed-point
lookup tables appear in this model. All three tables approximate the function
sin(2*pi*u) over the first quadrant and achieve a worst-case error of less
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than 2~-8. However, they have different restrictions on their breakpoint
spacing.

You can use the model fxpdemo_approx, which fxpdemo_approx_sin opens,
to generate Simulink Coder code (Simulink Coder software license required).
The sections that follow present several segments of generated code to
emphasize key differences.

To open the model, type at the MATLAB prompt:
fxpdemo_approx_sin

Data ROM Required for Each Lookup Table

This section looks at the data ROM required by each of the three spacing
options.

Uneven Case
Uneven spacing requires both Y data points and breakpoints:

int16_T yuneven[8];
uint16_T xuneven[8];

The total bytes used is 32.

Even Case
Even spacing requires only Y data points:

int16_T yeven[10];

The total bytes used is 20. The breakpoints are not explicitly required. The
code uses the spacing between the breakpoints, and might use the smallest
and largest breakpoints. At most, three values related to the breakpoints
are necessary.

Power of Two Case
Power of two spacing requires only Y data points:

int16_T ypow2[17];
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The total bytes used is 34. The breakpoints are not explicitly required. The
code uses the spacing between the breakpoints, and might use the smallest
and largest breakpoints. At most, three values related to the breakpoints
are necessary.

Determination of Out-of-Range Inputs

In all three cases, you must guard against the chance that the input is less
than the smallest breakpoint or greater than the biggest breakpoint. There
can be differences in how occurrences of these possibilities are handled.
However, the differences are generally minor and are normally not a key factor
in deciding to use one spacing method over another. The subsequent sections
assume that out-of-range inputs are impossible or have already been handled.

How the Lookup Tables Determine Input Location

This section describes how the three fixed-point lookup tables determine
where the current input is relative to the breakpoints.

Uneven Case

Unevenly-spaced breakpoints require a general-purpose algorithm such as a
binary search to determine where the input lies in relation to the breakpoints.
The following code provides an example:

iLeft = 0;
iRght = 7; /* number of breakpoints minus 1 */

while ( ( iRght - ilLeft ) > 1)
{
i = ( iLeft + iRght ) >> 1;

if ( uAngle < xuneven[i] )

{

iRght = i;
}
else
{

iLeft = 1i;
}
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}

The while loop executes up to log2(N) times, where N is the number of
breakpoints.

Even Case

Evenly-spaced breakpoints require only one step to determine where the
input lies in relation to the breakpoints:

iLeft = uAngle / 455U;

The divisor 455U represents the spacing between breakpoints. In general, the
dividend would be (uAngle - SmallestBreakPoint). In this example, the
smallest breakpoint is zero, so the code optimizes out the subtraction.

Power of Two Case

Power of two spaced breakpoints require only one step to determine where the
input lies in relation to the breakpoints:

iLeft = uAngle >> 8;

The number of shifts is 8 because the breakpoints have spacing 2°8. The
smallest breakpoint is zero, so UAngle replaces the general case of (uUAngle -
SmallestBreakPoint).

Comparison

To determine where the input lies with respect to the breakpoints, the
unevenly-spaced case requires much more code than the other two cases.
This code requires additional command ROM. If many lookup tables share
the binary search algorithm as a function, you can reduce this ROM penalty.
Even if the code is shared, the number of clock cycles required to determine
the location of the input is much higher for the unevenly-spaced cases than
the other two cases. If the code is shared, function-call overhead decreases
the speed of execution a little more.

In the evenly-spaced case and the power of two spaced case, you can determine
the location of the input with a single line of code. The evenly-spaced case
uses a general integer division. The power of two case uses a shift instead

of general division because the divisor is an exact power of two. Without
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knowing the specific processor, you cannot be certain that a shift is better
than division.

Many processors can implement division with a single assembly language
instruction, so the code will be small. However, this instruction often
takes many clock cycles to complete. Many processors do not provide a
division instruction. Division on these processors occurs through repeated
subtractions. This process is slow and requires a lot of machine code, but
this code can be shared.

Most processors provide a way to do logical and arithmetic shifts left and
right. A key difference is whether the processor can do N shifts in one
instruction (barrel shift) or requires N instructions that shift one bit at a time.
The barrel shift requires less code. Whether the barrel shift also increases
speed depends on the hardware that supports the operation.

The compiler can also complicate the comparison. In the previous example,
the command uAngle >> 8 essentially takes the upper 8 bits in a 16-bit word.
The compiler can detect this situation and replace the bit shifts with an
instruction that takes the bits directly. If the number of shifts is some other
value, such as 7, this optimization would not occur.

Interpolation for Each Lookup Table
In theory, you can calculate the interpolation with the following code:

y = ( ybata[iRght] - yData[iLeft] ) * ( u - xData[iLeft] )
/ ( xData[iRght] - xData[ilLeft] ) + yData[iLeft]

The term (xData[iRght] - xData[iLeft]) is the spacing between
neighboring breakpoints. If this value is constant, due to even spacing, some
simplification is possible. If spacing is not just even but also a power of two,
significant simplifications are possible for fixed-point implementations.

Uneven Case

For the uneven case, one possible implementation of the ideal interpolation
in fixed point is as follows:

xNum = uAngle - xuneven[iLeft];
xDen xuneven[iRght] - xuneven[ilLeft];
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yDiff = yuneven[iRght] - yuneven[iLeft];
MUL_S32_S16_U16( bigProd, yDiff, xNum );
DIV_NZP_S16_S32 U16_FLOOR( yDiff, bigProd, xDen );
yUneven = yuneven[iLeft] + yDiff;
The multiplication and division routines are not shown here. These routines

can be complex and depend on the target processor. For example, these
routines look different for a 16-bit processor than for a 32-bit processor.

Even Case

Evenly-spaced breakpoints implement interpolation using slightly different
calculations than the uneven case. The key difference is that the calculations
do not directly use the breakpoints. When the breakpoints are not required in
ROM, you can save a lot of memory:

xNum = uAngle - ( iLeft * 455U );
yDiff = yeven[iLeft+1] - yeven[iLeft];
MUL_S32_S16_U16( bigProd, yDiff, xNum );
DIV_NZP_S16_S32_U16_FLOOR( yDiff, bigProd, 455U );

yEven = yeven[iLeft] + yDiff;

Power of Two Case

Power of two spaced breakpoints implement interpolation using very different
calculations than the other two cases. As in the even case, breakpoints are
not used in the generated code and therefore not required in ROM:

lambda = uAngle & OxO0O0FFU;
yPow2 = ypow2[iLeft)+1] - ypow2[iLeft];

MUL_S16_U16_S16_SR8(yPow2,lambda,yPow2) ;
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yPow2 += ypow2[ilLeft];

This implementation has significant advantages over the uneven and even
implementations:

e A bitwise AND combined with a shift right at the end of the multiplication
replaces a subtraction and a division.

® The term (u - xData[iLeft] ) / ( xData[iRght] - xData[iLeft])
results in no loss of precision, because the spacing is a power of two.

In contrast, the uneven and even cases usually introduce rounding error in
this calculation.
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Summary of the Effects of Breakpoint Spacing

The following table summarizes the effects of breakpoint spacing on execution
speed, error, and memory usage.

Parameter

Even Power of 2
Spaced Data

Evenly Spaced Data

Unevenly Spaced
Data

Execution speed

The execution speed
is the fastest. The
position search and
interpolation are

the same as for
evenly-spaced data.
However, to increase
the speed more, a
bit shift replaces the
position search, and a
bit mask replaces the

The execution speed
is faster than that for
unevenly-spaced data,
because the position
search is faster and
the interpolation
requires a simple
division.

The execution speed
is the slowest of the
different spacings
because the position
search is slower, and
the interpolation
requires more
operations.

interpolation.

Error The error can be The error can be The error can be
larger than that for larger than that for smaller because
unevenly-spaced unevenly-spaced approximating
data because data because a function with
approximating approximating nonuniform curvature
a function with a function with requires fewer points
nonuniform curvature | nonuniform curvature | to achieve the same
requires more points | requires more points accuracy.
to achieve the same to achieve the same
accuracy. accuracy.

ROM usage Uses less command Uses less command Uses more command
ROM, but more data ROM, but more data ROM, but less data
ROM. ROM. ROM.

RAM usage Not significant. Not significant. Not significant.

The number of Y data points follows the expected pattern. For the same
worst-case error, unrestricted spacing (uneven) requires the fewest data
points, and power-of-two-spaced breakpoints require the most. However, the
implementation for the evenly-spaced and the power of two cases does not
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need the breakpoints in the generated code. This reduces their data ROM
requirements by half. As a result, the evenly-spaced case actually uses less
data ROM than the unevenly-spaced case. Also, the power of two case requires
only slightly more ROM than the uneven case. Changing the worst-case error
can change these rankings. Nonetheless, when you compare data ROM usage,
you should always take into account the fact that the evenly-spaced and power
of two spaced cases do not require their breakpoints in ROM.

The effort of determining where the current input is relative to the
breakpoints strongly favors the evenly-spaced and power of two spaced cases.
With uneven spacing, you use a binary search method that loops up to log2(N)
times. With even and power of two spacing, you can determine the location
with the execution of one line of C code. But you cannot decide the relative
advantages of power of two versus evenly spaced without detailed knowledge
of the hardware and the C compiler.

The effort of calculating the interpolation favors the power of two case, which
uses a bitwise AND operation and a shift to replace a subtraction and a
division. The advantage of this behavior depends on the specific hardware,
but you can expect an advantage in code size, speed, and also in accuracy. The
evenly-spaced case calculates the interpolation with a minor improvement in
efficiency over the unevenly-spaced case.
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e “Automatic Data Typing Methods” on page 9-2

¢ “Before Using the Fixed-Point Tool to Propose Data Types for Your
Simulink Model” on page 9-3

* “Best Practices for Using the Fixed-Point Tool to Propose Data Types for
Your Simulink Model” on page 9-5

® “Models That Might Cause Data Type Propagation Errors” on page 9-8
e “Automatic Data Typing Using Simulation Data” on page 9-11

® “Automatic Data Typing Using Derived Minimum and Maximum Values”
on page 9-30

e “Proposing Fraction Lengths” on page 9-48
® “Proposing Word Lengths” on page 9-64

® “Proposing Data Types For a Model Using Results from Multiple
Simulations” on page 9-73
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Automatic Data Typing Methods

You can use the Fixed-Point Tool to select data types automatically for your
model using the following methods.

Avutomatic Data
Typing Method

Advantages

Disadvantages

Using simulation
minimum and
maximum values

e Useful if you know
the inputs to use for
the model.

® You do not need to
specify any design
range information.

* Not always feasible
to collect full
simulation range.

¢ Simulation might
take a very long
time.

Using design minimum
and maximum values

You can use this
method if the model
contains blocks that
range analysis does not
support. However, if
possible, use simulation
data to propose data

types.

¢ Design range often
available only on
some input and
output signals.

e Can propose data
types only for signals
with specified design
minimum and
maximum values.

Using derived
minimum and
maximum values

You do not have to
simulate multiple
times to ensure that
simulation data covers
the full intended
operating range.

® Derivation might
take a very long
time.
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Before Using the Fixed-Point Tool to Propose Data Types
for Your Simulink Model

Before you use the Fixed-Point Tool to autoscale your Simulink model,
consider how automatic data typing affects your model:

¢ The Fixed-Point Tool proposes new data types for the fixed-point data
types in your model. If you choose to apply the proposed data types, the
Fixed-Point Tool changes the data types in your model. Before using the
Fixed-Point Tool, back up your model and workspace variables to ensure
that you can recover your original data type settings and capture the
fixed-point instrumentation and data type override settings using the
Shortcut Editor.

For more information, see “Best Practices for Using the Fixed-Point Tool to
Propose Data Types for Your Simulink Model” on page 9-5.

¢ Ensure that you can update diagram successfully before proposing data
types. Sometimes, changing the data types in your model results in
subsequent update diagram errors. It is good practice to test update
diagram again immediately before and after applying data type proposals.
This practice enables you to fix any errors before making further
modifications to your model.

For more information, see “Updating a Block Diagram” in the Simulink
documentation.

® The Fixed-Point Tool alerts you to potential issues with proposed data
types for each object in your model:

If the Fixed-Point Tool detects that the proposed data type introduces
data type errors when applied to an object, the tool marks the object

with an error, 1. You must inspect this proposal and fix the problem in
the Simulink model. After fixing the problem, rerun the simulation and
generate a proposal again to confirm that you have resolved the issue.

For more information, see “Examining Results to Resolve Conflicts”
on page 9-22.

If the Fixed-Point Tool detects that the proposed data type poses
potential issues for an object, the tool marks the object with a yellow

caution, . Review the proposal before accepting it.

9-3



9 Automatic Data Typing

= If the Fixed-Point Tool detects that the proposed data type poses no
issues for an object, the tool marks the object with a green check, 2.

Caution The Fixed-Point Tool does not detect all potential data type
issues. If the Fixed-Point Tool does not detect any issues for your model,
it is still possible to experience subsequent data type propagation
issues. For more information, see “Models That Might Cause Data Type
Propagation Errors” on page 9-8.
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Best Practices for Using the Fixed-Point Tool to Propose
Data Types for Your Simulink Model

Start with a Known Working Simulink Model

Before you begin automatic data typing, verify that update diagram succeeds
for your model. To update the diagram, press Ctrl+D. If update diagram
fails, before automatic data typing to propose data types, fix the failure in
your model.

Back Up Your Simulink Model

Before using the Fixed-Point Tool, always back up your Simulink model and
associated workspace variables.

Backing up your model provides a fallback in case of error and a baseline for
testing and validation.

Capture the Current Fixed-Point Instrumentation and
Data Type Override Settings

Before changing these settings, use the Fixed-Point Tool Shortcut Editor to
create a shortcut for these settings. Creating a shortcut allows you to revert
to the original model settings. For more information, see “How to Capture
Current Model Settings Using the Shortcut Editor” on page 6-11.

Convert Individual Subsystems

Convert individual subsystems in your model one at a time. This practice
facilitates debugging by isolating the source of fixed-point issues. For
example, see “Debugging a Fixed-Point Model” on page 6-12.

Isolate the System Under Conversion

If you encounter data type propagation issues with a particular subsystem
during the conversion, isolate this subsystem by placing Data Type Conversion
blocks on the inputs and outputs of the system. The Data Type Conversion
block converts an input signal of any Simulink data type to the data type



9 Automatic Data Typing

and scaling you specify for its Output data type parameter. This practice
enables you to continue automatic data typing for the rest of your model.

Use Lock Output Data Type Setting When Necessary

You can prevent the Fixed-Point Tool from replacing the current data
type. Use the Lock output data type setting against changes by the
fixed-point tools parameter that is available on many blocks. The default
setting allows for replacement. Use this setting when:

® You already know the fixed-point data types that you want to use for a
particular block.

For example, the block is modeling a real-world component. Set up the
block to allow for known hardware limitations, such as restricting outputs
to integer values.

Explicitly specify the output data type of the block and select Lock output
data type setting against changes by the fixed-point tools.

® You are debugging a model and know that a particular block accepts only
certain input signal data types.

Explicitly specify the output data type of upstream blocks and select Lock
output data type setting against changes by the fixed-point tools.

Save Simulink Signal Objects Before Closing Your
Model

If your model contains Simulink signal objects and you accept proposed data
types, the Fixed-Point Tool automatically applies the changes to the signal
objects. However, the Fixed-Point Tool does not automatically save changes
that it makes to Simulink signal objects. To preserve changes, before closing
your model, save the Simulink signal objects in your workspace and model.

Test Update Diagram Failure

Test update diagram immediately after applying data type proposals. If
update diagram fails, take one of the following actions:

¢ Use the failure information to fix the errors in your model. After fixing the
errors, test update diagram again.
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e If you are unable to fix the errors, restore your backed up model. After
restoring the model, try to fix the errors by, for example, locking output
data type settings, isolating the system, as described in the preceding
sections. After addressing the errors, test update diagram again.
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Models That Might Cause Data Type Propagation Errors

When the Fixed-Point Tool proposes changes to the data types in your model,
it alerts you to potential issues with the proposed data types for objects

in the model. If the Fixed-Point Tool alerts you to data type errors, you
must diagnose the errors and fix the problems. For more information, see
“Examining Results to Resolve Conflicts” on page 9-22.

The Fixed-Point Tool does not detect all potential data type issues. If the
Fixed-Point Tool does not report any issues for your model, it is still possible
to experience subsequent data type propagation errors. Before you use the
Fixed-Point Tool, back up your model to ensure that you can recover your
original data type settings. For more information, see “Best Practices for
Using the Fixed-Point Tool to Propose Data Types for Your Simulink Model”

on page 9-5.

The following models are likely to cause data type propagation issues.

Model Uses...

Fixed-Point Tool
Behavior

Data Type Propagation
Issue

Buses

Does not detect the
minimum, maximum,
data type, and initial
value information

for bus objects and
does not use them for
automatic data typing.

Fixed-Point Tool might
propose data types that are
inconsistent with the data
types for the bus object or
generate proposals that
cause overflows.

Simulink
parameter objects

Does not consider

any data type
information for
Simulink parameter
objects and does not
use them for automatic
data typing.

Fixed-Point Tool might
propose data types that are
inconsistent with the data
types for the parameter
object or generate proposals
that cause overflows.
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Model Uses...

Fixed-Point Tool
Behavior

Data Type Propagation
Issue

User-defined
S-functions

Cannot detect
the operation

of user-defined
S-functions.

¢ The user-defined
S-function accepts
only certain input data
types. The Fixed-Point
Tool cannot detect
this requirement and
proposes a different
data type upstream of
the S-function. Update
diagram fails on the model
due to data type mismatch
errors.

¢ The user-defined
S-function specifies certain
output data types. The
Fixed-Point Tool is not
aware of this requirement
and does not use it for
automatic data typing.
Therefore, the tool might
propose data types that are
inconsistent with the data
types for the S-function or
generate proposals that
cause overflows.

User-defined
masked
subsystems

Has no knowledge

of the masked
subsystem workspace
and therefore cannot
take this subsystem
into account when
proposing data types.

Fixed-Point Tool might
propose data types that

are inconsistent with the
requirements of the masked
subsystem, particularly if
the subsystem uses mask
initialization. The proposed
data types might cause data
type mismatch errors or
overflows.

9-9



9 Automatic Data Typing

9-10

Model Uses...

Fixed-Point Tool

Data Type Propagation

Behavior Issue
Linked subsystems | Does not include linked | Data type mismatch errors
subsystems when might occur at the linked
proposing data types. subsystem boundaries.
MATLAB Function | Does not propose data | Fixed-Point Tool might
blocks types for MATLAB propose data types that

Function blocks.

are inconsistent with

the requirements of the
MATLAB Function blocks.
The proposed data types
might cause data type
mismatch errors or overflows.

Model reference

Does not propose data
types for referenced
models.

Data type propagation errors
might occur at the referenced
model’s boundaries.
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Automatic Data Typing Using Simulation Data

In this section...

“Workflow for Automatic Data Typing Using Simulation Data” on page 9-11

“Prerequisites For Automatic Data Typing Using Simulation Data” on page
9-17

“Preparing the Model for Conversion” on page 9-18

“Running the Model to Gather a Floating-Point Benchmark” on page 9-18
“Proposing Data Types” on page 9-20

“Examining Results to Resolve Conflicts” on page 9-22

“Applying Proposed Data Types” on page 9-27

“Verifying New Settings” on page 9-28

“Automatic Data Typing of Simulink Signal Objects” on page 9-28

Workflow for Automatic Data Typing Using
Simulation Data

Workflow for Automatic Data Typing Using Simulation Data

1. Prerequisites

1.1 | Open your model in Simulink and set it up for use with the
Fixed-Point Tool.See Prerequisites.

1.2 | From the Simulink Tools menu, select Fixed-Point Tool to open
the Fixed-Point Tool.

2. Prepare the model for conversion

Note If you do not have a floating-point model, skip this step.

2.1 | In the Fixed-Point Tool Model Hierarchy pane, select the system
or subsystem of interest.

9-11
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Workflow for Automatic Data Typing Using Simulation Data

2.2 | In the Fixed-point preparation for selected system pane, click
Fixed-Point Advisor.
2.3 | Use the Fixed-Point Advisor to prepare the model for conversion. See

Chapter 12, “Fixed-Point Advisor Reference”.

3. Run the model to gather floating-point benchmark

3.1 | Enable signal logging for system or subsystem of interest:
® In the Fixed-Point Tool Model Hierarchy pane, select the system
or subsystem.
® Right-click to open the context menu.
® Use the Enable Signal Logging option to enable signal logging
as necessary.
For more information, see “Signal Logging Options” in the fxptdlg
reference.
3.2 | In the Fixed-Point Tool Model Hierarchy pane, select the system or
subsystem for which you want a data type proposal.
3.3 | In the Shortcuts to set up runs pane, click the Model-wide

double override and full instrumentation button to set:

* Data type override to Double
¢ Data type override applies to to ALl numeric types

¢ Fixed-point instrumentation mode to Minimums, maximums
and overflows

¢ The run name (in the Data collection pane Store results in
run field) to DoubleOverride

Using these settings, the Fixed-Point Tool performs a global override
of the fixed-point data types and scaling using double-precision
numbers, thus avoiding quantization effects. During simulation,
the tool logs minimum value, maximum value, and overflow

data for all blocks in the current system or subsystem in the run
DoubleOverride.
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Workflow for Automatic Data Typing Using Simulation Data

Note Data type override does not apply to boolean or enumerated
data types.

3.4

Click the Fixed-Point Tool Start simulation button ﬂ to run the
simulation.

The Fixed-Point Tool highlights any simulation results that have
issues, such as overflows or saturations.

4 Propose data types

4.1

In the Automatic data typing for selected system Settings
pane, select either Propose fraction lengths for specified word
lengths or Propose word lengths for specified fraction lengths.

Tip If these options are not visible, use the Configure link to display
them.

4.2

If you have safety margins to apply, set Percent safety margin for
design and derived min/max and Percent safety margin for
simulation min/max as necessary.

For more information, see “Safety margin for simulation min/max
(%)” and “Safety margin for design and derived min/max (%)” in the
fxptdlg reference.
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Workflow for Automatic Data Typing Using Simulation Data

4.3

Click the Propose fraction lengths or Propose word lengths
button °T .

Note This action does not write the proposed data types to the model.

If there are conflicts in your model, the Fixed-Point Tool displays
the Result Details dialog box.

If you do not see this warning, there are no conflicts in your model,
skip the next step.

4.4

Click OK on the Result Details dialog box to close it.

5. Examine results to resolve conflicts

5.1 | Use the Show option on the Fixed-Point Tool toolbar to filter the
results to show Conflicts with proposed data types.
The Fixed-Point Tool alerts you to potential issues with the proposed
data types by displaying a block icon annotated with red, yellow,
and green symbols.

5.2

12 The proposed data type will introduce data type errors if applied
to this object. You must inspect this result and fix the problem in
the Simulink model.

To review the error and correct the problem:

1 Select the result, right-click and select Highlight Block In Model
from the context menu to identify which block has a conflict.

2 Click the Show details for selected result button @ to open
the Result Details dialog box.

3 Use the advice provided in the Needs Attention section of the
Result Details dialog box to resolve the conflict by fixing the
problem in the Simulink model.
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Workflow for Automatic Data Typing Using Simulation Data

5.3

X The proposed data type poses potential issues for this object. You
should review this proposal.

Review the Result Details for the &2 warnings and correct the
problem if necessary.

5.4

You have changed the Simulink model, so the benchmark data is

not up to date. Click the Fixed-Point Tool Start button = J to rerun
the simulation.

The Fixed-Point Tool warns you that you have not applied proposals.
Click the Ignore and Simulate button to continue.

5.5

Click the Propose fraction lengths or Propose word lengths
button to generate a data type proposal, OT .

5.6

Use the Show option on the Fixed-Point Tool toolbar to filter the
results to show All results.

6. Apply proposed data types

6.1

Examine each result. For more information about a particular result,
select the result then click the Show details for selected result

button (i) to display the Result Details dialog box.

6.2

If you do not want to accept the proposal for a result, in the
Fixed-Point Tool Contents pane, clear the Accept checkbox for that
result.

6.3

Click the Apply accepted fraction lengths or Apply accepted

word lengths button B to write the proposed data types to the
model.

Note If you have not fixed all the warnings in the model, the
Fixed-Point Tool displays a warning dialog box.

7. Verify new settings
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Workflow for Automatic Data Typing Using Simulation Data

7.1 | In the Shortcuts to set up runs pane, click the Model-wide
no override and full instrumentation button to use the locally
specified data type settings.

This sets:

* Data type override to Use local settings

¢ Fixed-point instrumentation mode to Minimums, maximums
and overflows

¢ The run name (in the Data collection pane Store results in
run field) to NoOverride

Using these settings, the Fixed-Point Tool simulates the model using
the new fixed-point settings and logs minimum value, maximum
value, and overflow data for all blocks in the current system or
subsystem in the run NoOverride.

2 Click the Fixed-Point Tool Start button ﬂ to run the simulation.

7.3 | Compare the ideal results stored in the DoubleOverride run with
the fixed-point results in the NoOverride run.:

1 In the Contents pane, select a result that has logged signal data.
These results are annotated with the [If] icon.

2 Click the Difference Plot of Signal 5 to view the difference
between the two runs for the selected result.

Note If you have more than two runs, in the Difference Plot
Selector dialog box, select the two runs that you want to compare.
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Prerequisites For Automatic Data Typing Using
Simulation Data

To use the Fixed-Point Tool to generate data type proposals for your model
based on simulation minimum and maximum values only, you must first set
up your model in Simulink.

1 Open your model in Simulink.

2 Select Simulation > Normal in the Simulink menu to ensure the model
runs in Normal mode.

Note The Fixed-Point Tool supports only Normal mode.

3 If you are using design minimum and maximum range information, add
this information to blocks.

You specify a design range for model objects using parameters typically
titled Output minimum and Output maximum. See “Blocks That Allow
Signal Range Specification” in Simulink User’s Guide for a list of blocks
that permit you to specify these values.

4 Specify fixed-point data types for blocks and signals in your model. For
blocks with the Data Type Assistant, use the Calculate Best-Precision
Scaling button to calculate best-precision scaling automatically. For more
information, see “Specifying Fixed-Point Data Types with the Data Type
Assistant” on page 1-25.

Note If you have a floating-point model, use the Fixed-Point Advisor

to prepare your model for conversion to an equivalent fixed-point
representation. To learn more about the Fixed-Point Advisor, see Chapter
5, “Fixed-Point Advisor”.

5 You can choose to lock some blocks against automatic data typing by
selecting the Lock output data type setting against changes by the
fixed-point tools parameter. If an object’s Lock output data type
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setting against changes by the fixed-point tools parameter is selected,
the tool does not propose data types for that object.

6 From the Simulink Edit menu, select Update Diagram to perform
parameter range checking for all blocks in the model.

If update diagram fails, use the failure information to fix the errors in your
model. After fixing the errors, test update diagram again. If you are unable
to fix the errors, restore your backed up model.

7 Back up the model as a fallback in case of error and a baseline for testing
and validation.

8 Create a shortcut to capture the initial fixed-point instrumentation and
data type override settings. For more information, see “How to Capture
Current Model Settings Using the Shortcut Editor” on page 6-11.

Preparing the Model for Conversion

If you have a floating-point model or subsystem, first use the Fixed-Point
Advisor to prepare the model or subsystem for conversion to fixed point. The
Fixed-Point Advisor checks the model against fixed-point guidelines and
provides advice about unsupported blocks. You need only do this preparation
once.

1 From the Simulink Tools menu, select Fixed-Point Tool.

2 In the Fixed-Point Tool Model Hierarchy pane, select the system or
subsystem of interest.

3 In the Fixed-point preparation for selected system pane, click
Fixed-Point Advisor.

4 Use the Fixed-Point Advisor to prepare the model for conversion. See
Chapter 12, “Fixed-Point Advisor Reference”.

Running the Model to Gather a Floating-Point
Benchmark

You first run the model with a global override of the fixed-point data types
using double-precision numbers to avoid quantization effects. This provides
a floating-point benchmark that represents the ideal output. The Simulink
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software logs the signal logging results to the MATLAB workspace. The
Fixed-Point Tool displays the simulation results including minimum and
maximum values that occur during the run.

To Gather a Floating-Point Benchmark
1 Launch Fixed-Point Tool.

From the Simulink Tools menu, select Fixed-Point Tool.

2 Enable signal logging for the system or subsystem of interest. Using
the Fixed-Point Tool you can enable signal logging for multiple signals
simultaneously. For more information, see “Signal Logging Options” in the
fxptdlg Reference.

To enable signal logging:

a Select the system or subsystem in the Fixed-Point Tool Model
Hierarchy pane.

b Right-click to open the context menu.

¢ Use the Enable Signal Logging option to enable signal logging, as
necessary.

The Contents pane of the Fixed-Point Tool displays an antenna icon I
next to items that have signal logging enabled.

Note You can only plot results for signals that have signal logging enabled.

3 In the Fixed-Point Tool Model Hierarchy pane, select the system or
subsystem for which you want a proposal.

4 In the Shortcuts to set up runs pane, click the Model-wide double
override and full instrumentation button to set:

* Data type override to Double
* Data type override applies to to A1l numeric types

¢ Fixed-point instrumentation mode to Minimums, maximums and
overflows
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® The run name (in the Data collection pane Store results in run field)
to DoubleOverride

Using these settings, the Fixed-Point Tool performs a global override of

the fixed-point data types with double-precision data types, thus avoiding

quantization effects. During simulation, the tool logs minimum value,

maximum value, and overflow data for all blocks in the current system or

subsystem in the run DoubleOverride.

Note Data type override does not apply to boolean or enumerated data
types.

5 Click the Fixed-Point Tool Simulate button @ to run the simulation.

The Fixed-Point Tool highlights any simulation results that have issues,
such as overflows or saturations.

Proposing Data Types

The Fixed-Point Tool proposes data types for model objects that specify
fixed-point data types unless an object’s Lock output data type setting
against changes by the fixed-point tools parameter is selected or the
data types are using inheritance rules.

When proposing data types, the Fixed-Point Tool collects the following types
of range data for model objects:

Design minimum or maximum values — You specify a design range for
model objects using parameters typically titled Qutput minimum and
Output maximum. See “Blocks That Allow Signal Range Specification”
in the Simulink User’s Guide for a list of blocks that permit you to specify
these values.

Simulation minimum or maximum values — When simulating a system
whose Fixed-point instrumentation mode parameter specifies
Minimums, maximums and overflows, the Fixed-Point Tool logs the
minimum and maximum values generated by model objects. For more
information about the Fixed-point instrumentation mode parameter,
see the documentation for the fxptdlg function in the Simulink Reference.
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® Derived minimum or maximum values — When deriving minimum and
maximum values for a selected system, the Fixed-Point Tool uses the
design minimum and maximum values that you specify for the model to
derive range information for signals in your model. For more information,
see Chapter 10, “Range Analysis”.

The Fixed-Point Tool uses available range data to calculate data type
proposals according to the following rules:

® Design minimum and maximum values take precedence over the
simulation and derived range.

The Safety margin for design and derived min/max (%) parameter
specifies a range that differs from that defined by the design range. For
example, a value of 20 specifies that a range of at least 20 percent larger is
desired. A value of -10 specifies that a range of up to 10 percent smaller is
acceptable. If this parameter is not visible in the Automatic data typing
for selected system pane, click the Configure link.

® The tool observes the derived range only when the Derived min/max
option is selected. Otherwise, the tool ignores the derived range.

The Safety margin for design and derived min/max (%) parameter
specifies a range that differs from that defined by the derived range. For
example, a value of 20 specifies that a range of at least 20 percent larger is
desired. A value of -10 specifies that a range of up to 10 percent smaller is
acceptable. If this parameter is not visible in the Automatic data typing
for selected system pane, click the Configure link.

® The tool observes the simulation range only when the Simulation
min/max option is selected. Otherwise, the tool ignores the simulation
range.

The Safety margin for simulation min/max (%) parameter specifies

a range that differs from that defined by the simulation range. For
example, a value of 20 specifies that a range of at least 20 percent larger is
desired. A value of -10 specifies that a range of up to 10 percent smaller is
acceptable. If this parameter is not visible in the Automatic data typing
for selected system pane, click the Configure link.
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To Propose Data Types

1 On the Settings pane, select either Propose fraction lengths for
specified word lengths or Propose word lengths for specified
fraction lengths.

2 To use simulation min/max information only, clear Derived min/max.

3 If you have safety margins to apply:

a Enter Safety margin for design and derived min/max (%), if
applicable. For example, enter 10 for a 10% safety margin. If this
parameter is not visible in the Automatic data typing for selected
system pane, click the Configure link.

b Enter Safety margin for simulation min/max (%), if applicable.
If this parameter is not visible in the Automatic data typing for
selected system pane, click the Configure link.

4 Click the Propose fraction lengths or Propose word lengths button

to generate a proposal, L .

Note The Fixed-Point Tool does not alter your model when it proposes
data types.

If there are conflicts in your model, the Fixed-Point Tool displays the
Result Details dialog box.

If you do not see this warning, there are no conflicts in your model, go to
“Applying Proposed Data Types” on page 9-27.

Examining Results to Resolve Conflicts

You can examine each proposal using the Result Details dialog box, which
displays the rationale underlying the proposed data types. Also, this dialog
box describes potential issues or errors, and it suggests methods for resolving
them. To open the dialog box:

1 In the Contents pane, select an object that has proposed data types.
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2 Click the Show details for selected result button @

The Result Details dialog box provides the following information about the
proposed data types, as appropriate.

Summary

Details which run the result is in and the current data type specified for
the selected object.

Proposed Data Type Summary

This section describes a proposal in terms of how it differs from the object’s
current data type. For cases when the Fixed-Point Tool does not propose data
types, this section provides an explanation. For example, the data type might
be locked against changes by the fixed-point tool.

Needs Attention

This section lists potential issues and errors associated with data type
proposals. It describes the issues and suggests methods for resolving them.
The dialog box uses the following icons to differentiate warnings from errors.

M Indicates a warning message.

@ Indicates an error message.

Shared Data Type Summary

This section of the dialog box tells you that the selected object must share the
same data type as other objects in the model because of data type propagation
rules. For example, the inputs to a Merge block must have the same data
type. Therefore, the outputs of blocks that connect to these inputs must share
the same data type.

The dialog box provides a hyperlink that you can click to highlight the objects
that share data types in the model. To clear this highlighting, from the model
View menu, select Remove Highlighting.
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The Fixed-Point Tool allocates an identification tag to objects that must share
the same data type. The tool displays this identification tag in the DT Group
column for the object. To display only the objects that must share data types,
from the Fixed-Point Tool main toolbar, select the Show option. For more
information, see “Main Toolbar” in the fxptdlg reference documentation.

Constrained Data Type Summary

Some Simulink blocks are designed to accept only certain data types on some
ports. This section of the dialog box tells you when a block that connects to
the selected object has data type constraints that impact the proposed data
type of the selected object. The dialog box lists the blocks that have data type
constraints, provides details of the constrained data types, and links to the
blocks in the model.

Data Type Details
This section provides a table that lists model object attributes that influence
its data type proposal.

Item Description

Currently Data type that an object currently specifies.
Specified Data

Type

Proposed Data Data type that the Fixed-Point Tool proposes for this
Type object.

Proposed Maximum value that the proposed data type can
Representable represent.

Maximum

Design Maximum | Design maximum value that an object specifies
using, e.g., its Output maximum parameter.

Simulation Maximum value that occurs during simulation.
Maximum
Simulation Minimum value that occurs during simulation.
Minimum
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Item Description

Design Minimum | Design minimum value that an object specifies using,
e.g., its Output minimum parameter.

Proposed Minimum value that the proposed data type can
Representable represent.
Minimum

The table also includes a column titled Percent Proposed Representable.
This column indicates the percentage of the proposed representable range
that each value covers. Overflows occur when values lie outside this range.

Shared Values. When proposing data types, the Fixed-Point Tool attempts
to satisfy data type requirements that model objects impose on one another.
For example, the Sum block provides an option that requires all of its inputs
to have the same data type. Consequently, the table might also list attributes
of other model objects that impact the proposal for the selected object. In such
cases, the table displays the following types of shared values:

e Initial Values

Some model objects provide parameters that allow you to specify the
initial values of their signals. For example, the Constant block includes
a Constant value parameter that initializes the block output signal.
The Fixed-Point Tool uses initial values to propose data types for model
objects whose design and simulation ranges are unavailable. When data
type dependencies exist, the tool considers how initial values impact the
proposals for neighboring objects.

® Model-Required Parameters

Some model objects require the specification of numeric parameters to
compute the value of their outputs. For example, the Table data parameter
of an n-D Lookup Table block specifies values that the block requires to
perform a lookup operation and generate output. When proposing data
types, the Fixed-Point Tool considers how this “model-required” parameter
value impacts the proposals for neighboring objects.

To Examine the Results and Resolve Conflicts
1 Click OK on the Result Details dialog box to close the dialog box.
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2 On the Fixed-Point Tool toolbar, use the Show option to filter the results
to show Conflicts with proposed data types.

The Fixed-Point Tool lists its data type proposals in the Contents pane
under the ProposedDT column. The tool alerts you to potential issues for
each object in the list by displaying a green, yellow, or red icon.

& The proposed data type poses no issues for this object.
[0 The proposed data type poses potential issues for this object.

[ The proposed data type will introduce data type errors if applied
to this object.

3 Review and fix each 12 error.

a Select the error, right-click and select Highlight Block In Model from
the context menu to identify which block has a conflict.

b Click the Show details for selected result button @ to open the
Result Details dialog box.

¢ Use the advice provided in the Needs Attention section of the Result
Details dialog box to resolve the conflict by fixing the problem in the
Simulink model.

4 Review the Result Details for the [ warnings and correct the problem
if necessary.

5 You have changed the Simulink model, so the benchmark data is not up to

date. Click the Fixed-Point Tool Start button @ to rerun the simulation.

The Fixed-Point Tool warns you that you have not applied proposals. Click
the Ignore and Simulate button to continue.

6 Click the Propose fraction lengths or Propose word lengths button

to generate a proposal, "

7 Use the Show option on the Fixed-Point Tool toolbar to filter the results
to show All results.
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Applying Proposed Data Types

After reviewing the data type proposals, you are ready to apply the proposed
data types to your model. The Fixed-Point Tool allows you to apply its data
type proposals selectively to objects in your model. Use the Accept check box
in the Contents pane to specify the proposals that you want to assign to
model objects. The check box indicates the status of a proposal:

¥ The Fixed-Point Tool will apply the proposed data type to this object.
By default, the tool selects the Accept check box when a proposal
differs from the object’s current data type.

[T The Fixed-Point Tool will ignore the proposed data type and leave the
current data type intact for this object.

[T No proposal exists for this object. This occurs, for example, when
the object specifies a data type inheritance rule or is locked against
automatic data typing.

To Apply Proposed Data Types

1 Examine each result. For more information about a particular result, select
the result and then click the Show details for selected result button 0
to display the Result Details dialog box.

2 If you do not want to accept the proposal for a result, clear the Accept
checkbox in the Fixed-Point Tool Contents pane for that result.

Tip The Fixed-Point Tool enables you to customize its proposals before
applying them to your model. To do so, in the Contents pane, click a
ProposedDT cell and edit the data type expression. See documentation for
the fixdt function for information about specifying fixed-point data types.

3 Click the Apply accepted fraction lengths or Apply accepted word
lengths button BB to write the proposed data types to the model.
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Note If you have not fixed all the warnings in the model, the Fixed-Point
Tool displays a warning dialog box.

Verifying New Settings

After applying proposed data types to your model, you simulate the model
using the fixed-point data types that you applied.

To Verify the New Settings

1 In the Fixed-Point Tool Model Hierarchy pane, select the system or
subsystem for which you want a proposal.

2 In the Shortcuts to set up runs pane, click the Model-wide no override
and full instrumentation button to use the locally specified data type
settings. This shortcut also sets the run name to NoOverride

3 Click the Fixed-Point Tool Start button @ to run the simulation.

4 Compare the ideal results stored in the DoubleOverride run with the
fixed-point results in the NoOverride run:

a In the Contents pane, select a result that has logged signal data. These

results are annotated with the Iﬁ icon.

b Click the Difference Plot of Signal g to view the difference between
the fixed-point and double override runs for the selected result.

Note If you have more than two runs, in the Difference Plot Selector
dialog box, select the two runs that you want to compare.

Automatic Data Typing of Simulink Signal Obijects

Fixed-Point Tool can propose new data types for Simulink signal objects in
the base or model workspace. If you accept the proposed data types, the
Fixed-Point Tool will apply the new data types to the Simulink signal objects
automatically.



Automatic Data Typing Using Simulation Data

Caution The Fixed-Point Tool does not save the changes to the signal object.
You must save the changes before closing the model.

If you delete or manipulate a signal object in the base workspace after
automatic data typing, you must rerun the automatic data typing.
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In this section...

“Prerequisites for Automatic Data Typing Using Derived Minimum and
Maximum Values” on page 9-30

“Workflow for Automatic Data Typing Using Derived Data” on page 9-31
“Prerequisites for Automatic Data Typing Using Derived Data” on page 9-35

“Preparing Model Prior to Automatic Data Typing Using Derived Data”
on page 9-37

“Deriving Minimum and Maximum Values” on page 9-37
“Resolving Range Analysis Issues” on page 9-39
“Proposing Data Types” on page 9-39

“Examining Results to Resolve Conflicts” on page 9-42

“Applying Proposed Data Types” on page 9-46

Prerequisites for Automatic Data Typing Using
Derived Minimum and Maximum Values

The Fixed-Point Tool uses range analysis to derive minimum and maximum
values for objects in your model.

Range analysis:

¢ Requires a Simulink Fixed Point license.

¢ Does not run on Mac® platforms.

For more information, see Chapter 10, “Range Analysis”.
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Workflow for Automatic Data Typing Using Derived

Data

Workflow for Automatic Data Typing Using Derived Data

1. Prerequisites

1.1

Open your model in Simulink and set it up for use with the
Fixed-Point Tool.

2. Prepare model prior to automatic data typing using derived data

2.1 | If you have a floating-point model, use the Fixed-Point Advisor to
prepare the model for conversion to fixed point. From the Simulink
Tools menu, select Fixed-Point Tool.

2.2 | In the Fixed-Point Tool Model Hierarchy pane, select the system
or subsystem of interest.

2.3 | In the Fixed-point preparation for selected system pane, click
Fixed-Point Advisor.

2.4 | Use the Fixed-Point Advisor to prepare the model for conversion. See

Chapter 12, “Fixed-Point Advisor Reference”.

3.Derive minimum and maximum values

3.1 | In the Fixed-Point Tool Model Hierarchy pane, select the system
or subsystem of interest.

3.2 | In the Settings for selected system pane, set Data type override
to Double.

3.3 | Optionally, in the Data collection pane Store results in run field,

specify a run name. Specifying a unique run name avoids overwriting
results from previous runs.
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Workflow for Automatic Data Typing Using Derived Data

3.4

In the Fixed-Point Tool, click Derive min/max values for model.

The analysis runs and tries to derive range information for objects in
the selected system.

If the analysis successfully derives range data for the model, the
Fixed-Point Tool displays the derived minimum and maximum
values for the blocks in the selected system. (See “Viewing Derived
Range Information in the Fixed-Point Tool” on page 10-10.) Review
the results and then skip the following two steps; you are ready to
propose data types.

If the analysis fails, examine the error messages and resolve the
issues.

4. Resolve any issues

4.1

If the model contains blocks that range analysis does not support, the
Fixed-Point Tool generates an error.

To fix the error, examine the error message and replace the
unsupported blocks.

4.2

If the analysis cannot derive range data because the model contains
conflicting design range information, the Fixed-Point Tool generates
an error and highlights the objects that have no derived ranges.

To fix this error, examine the design ranges specified in the model to
identify inconsistent design specifications and modify them to make
them consistent.

4.3

If the analysis cannot derive range data for an object because there
is insufficient design range information specified on the model, the
Fixed-Point Tool highlights the results for the object.

Examine the model to determine which design range information 1s
missing. Specify additional design range information as necessary.

5. Derive minimum and maximum values
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Workflow for Automatic Data Typing Using Derived Data

5.1

After resolving range analysis issues, derive range information again.

Note You might need to repeat the previous two steps until the
analysis is successful.

6 Propose data types

6.1

In the Automatic data typing for selected system Settings
pane, select either Propose fraction lengths for specified word
lengths or Propose word lengths for specified fraction lengths,
as applicable.

Tip If these options are not visible, use the Configure link to display
them.

6.2

If you have safety margins to apply, set Percent safety margin for
design and derived min/max. If this parameter is not visible in
the Automatic data typing for selected system pane, click the
Configure link.

For more information, see “Safety margin for simulation min/max
(%)” in the fxptdlg reference.

6.3

Click the Propose fraction lengths or Propose word lengths

button BT .

Note This action does not write the proposed data types to the model.

If there are conflicts in your model, the Fixed-Point Tool displays
the Result Details dialog box.

If you do not see this warning, there are no conflicts in your model,
skip the next step.

7. Examine results to resolve conflicts
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Workflow for Automatic Data Typing Using Derived Data

7.1 | Click OK on the Result Details dialog box to close it.

7.2 | Use the Show option on the Fixed-Point Tool toolbar to filter the
results to show Conflicts with proposed data types.

The Fixed-Point Tool alerts you to potential issues for each result by
displaying a block icon annotated with red, yellow, and green symbols.

i) I The proposed data types will introduce data type errors if applied

to this object. You must inspect this result and fix the problem in
the Simulink model.

To review the error and correct the problem:

® Select the result, right-click and select Highlight Block In Model
from the context menu to identify which block has a conflict.

® (Click the Show details for selected result button @ to open
the Result Details dialog box.

® Use the advice provided in the Needs Attention section of the
Result Details dialog box to resolve the conflict by fixing the
problem in the Simulink model.

fe H The proposed data type poses potential issues for this object. You

should review this proposal.

Review the Result Details for the &2 warnings and correct the
problem if necessary.

7.5 | You have changed the Simulink model, so the benchmark data is

not up to date. Click the Fixed-Point Tool Start button ﬂ to rerun
the simulation.

The Fixed-Point Tool warns you that you have not applied proposals.
Click the Ignore and Simulate button to continue.

7.6 | Click the Propose fraction lengths or Propose word lengths

button to generate a data type proposal, ol

7.7 | Use the Show option on the Fixed-Point Tool toolbar to filter the
results to show All results.
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Workflow for Automatic Data Typing Using Derived Data

8. Apply proposed data types

8.1 | Examine each result. For more information about a particular result,
select the result then click the Show details for selected result

button (i) to display the Result Details dialog box.

8.2 | If you do not want to accept the proposal for a result, clear the Accept
checkbox in the Fixed-Point Tool Contents pane for that result.

8.3 | Click the Apply accepted fraction lengths or Apply accepted

word lengths button B9 to write the proposed data types to the
model.

Note If you have not fixed all the warnings in the model, the
Fixed-Point Tool displays a warning dialog box.

9. Update Diagram

9.1 | From the model’s Edit menu, select Update Diagram.

After applying the data types to the model, update diagram to check
for data type propagation issues.

If update diagram fails, use the failure information to fix the errors in
your model. After fixing the errors, test update diagram again. If you
are unable to fix the errors, restore your backed up model.

Prerequisites for Automatic Data Typing Using
Derived Data

To use the Fixed-Point Tool to generate data type proposals for your model
based on derived minimum and maximum values only, you must first set
up your model in Simulink.

1 Open your model in Simulink.

2 Select Simulation > Normal in the Simulink menu to ensure the model
runs in Normal mode.
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Note The Fixed-Point Tool supports only Normal mode.

3 To autoscale using derived data, you must specify design minimum and
maximum values on at least the model inputs. The range analysis tries to
narrow the derived range by using all the specified design ranges in the
model. The more design range information you specify, the more likely
the range analysis is to succeed. As the analysis is performed, it derives
new range information for the model and then attempts to use this new
information together with the specified ranges to derive ranges for the
remaining objects in the model. For this reason, the analysis results might
depend on block priorities because these priorities determine the order in
which the software analyzes the blocks.

You specify a design range for model objects using parameters typically
titled Output minimum and Qutput maximum. See “Blocks That Allow
Signal Range Specification” in Simulink User’s Guide for a list of blocks
that permit you to specify these values.

4 Specify fixed-point data types for blocks and signals in your model. For
blocks with the Data Type Assistant, use the Calculate Best-Precision
Scaling button to calculate best-precision scaling automatically. For more
information, see “Specifying Fixed-Point Data Types with the Data Type
Assistant” on page 1-25.

5 You can choose to lock some blocks against automatic data typing by
selecting the Lock output data type setting against changes by the
fixed-point tools parameter. If an object’s Lock output data type
setting against changes by the fixed-point tools parameter is selected,
the tool does not propose data types for that object.

6 From the Simulink Edit menu, select Update Diagram to perform
parameter range checking for all blocks in the model.

If update diagram fails, use the failure information to fix the errors in your
model. After fixing the errors, test update diagram again. If you are unable
to fix the errors, restore your backed up model.

7 Back up the model as a fallback in case of error and a baseline for testing
and validation.
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8 Create a shortcut to capture the initial fixed-point instrumentation and
data type override settings. For more information, see “How to Capture
Current Model Settings Using the Shortcut Editor” on page 6-11.

Preparing Model Prior to Automatic Data Typing
Using Derived Data

If you have a floating-point model, use the Fixed-Point Advisor to prepare the
model for conversion to fixed point. The Fixed-Point Advisor:

® Checks the model against fixed-point guidelines.
¢ [dentifies unsupported blocks.
¢ Removes output data type inheritance from blocks..

¢ Allows you to promote simulation minimum and maximum values to design
minimum and maximum values. This capability is useful if you have not
specified design ranges and you have simulated the model with inputs that
cover the full intended operating range. For more information, see “Specify
block minimum and maximum values” on page 12-33.

® Runs simulation range detection diagnostics. When preparing the model
for automatic data typing using derived data, you can complete the
preparation without setting up signal logging and creating a simulation
reference run. However, creating at least one simulation run is useful for
early error detection. Simulating the model helps to verify that the design
minimum and maximum values specified on the model are correct and that
the model conforms to modeling guidelines.

To learn more about the Fixed-Point Advisor, see Chapter 5, “Fixed-Point
Advisor”.

Deriving Minimum and Maximum Values

1 In the Fixed-Point Tool Model Hierarchy pane, select the system or
subsystem of interest.

2 In the Settings for selected system pane, set Data type override to
Double.

3 In the Fixed-Point Tool, click Derive min/max values for model.
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The analysis runs and tries to derive range information for objects in the
selected system.

If the analysis successfully derives range data for the model, the
Fixed-Point Tool displays the derived minimum and maximum values
for the blocks in the selected system. (See “Viewing Derived Range
Information in the Fixed-Point Tool” on page 10-10.) Review the results
before proposing data types.

If the analysis fails, examine the error messages and resolve the issues.
See “Resolving Range Analysis Issues” on page 9-39.
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Resolving Range Analysis Issues

The following table shows the different types of range analysis issues and the
next steps that you should take to resolve them.

Analysis Results

Next Steps

For More Information

The analysis fails
because the model
contains blocks that
it does not support.
The Fixed-Point Tool
generates an error.

To fix the error, review
the error message

information and replace
the unsupported blocks.

“Model Compatibility
with Range Analysis”
on page 10-6

The analysis cannot
derive range data
because the model
contains conflicting
design range
information. The
Fixed-Point Tool
generates an error.

To fix this error,
examine the design
ranges specified in
the model to identify
inconsistent design
specifications and
modify them to make
them consistent.

“Fixing Design Range
Conflicts” on page 10-22

The analysis cannot
derive range data for
an object because there
is insufficient design
range information
specified on the model.
The Fixed-Point Tool
highlights the results
for the object.

Examine the model to
determine which design
range information is
missing.

“Providing More Design
Range Information” on
page 10-20

Proposing Data Types

The Fixed-Point Tool proposes data types for model objects that specify
fixed-point data types unless an object’s Lock output data type setting
against changes by the fixed-point tools parameter is selected or the
data types are using inheritance rules. You set up the tool to either propose
fraction lengths for specified word lengths or to propose word lengths for
specified fraction lengths. For more information, see “Proposing Fraction
Lengths” on page 9-48 and “Proposing Word Lengths” on page 9-64.
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When generating data type proposals, the Fixed-Point Tool collects the
following types of range data for model objects:

¢ Design minimum or maximum values — You specify a design range for
model objects using parameters typically titled OQOutput minimum and
Output maximum. See “Blocks That Allow Signal Range Specification”
in the Simulink User’s Guide for a list of blocks that permit you to specify
these values.

¢ Simulation minimum or maximum values — When simulating a system
whose Fixed-point instrumentation mode parameter specifies
Minimums, maximums and overflows, the Fixed-Point Tool logs the
minimum and maximum values generated by model objects. For more
information about the Fixed-point instrumentation mode parameter,
see the documentation for the fxptdlg function in the Simulink Reference.

® Derived minimum or maximum values — When deriving minimum and
maximum values for a selected system, the Fixed-Point Tool uses the
design minimum and maximum values that you specify for the model to
derive range information for signals in your model. For more information,
see Chapter 10, “Range Analysis”.

For models that contain floating-point operations, range analysis might
report a range that is slightly larger than expected due to rounding errors
in the analysis. Automatic data typing bases its proposal on this slightly
larger derived range. To avoid this issue, use the safety margin for design
and derived min/max.

The Fixed-Point Tool uses available range data to calculate data type
proposals according to the following rules:

® Design minimum and maximum values take precedence over the
simulation and derived range.

The Safety margin for design and derived min/max (%) parameter
specifies a range that differs from that defined by the design range. For
example, a value of 20 specifies that a range of at least 20 percent larger is
desired. A value of -10 specifies that a range of up to 10 percent smaller is
acceptable. If this parameter is not visible in the Automatic data typing
for selected system pane, click the Configure link.
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® The tool observes the derived range only when the Derived min/max
option is selected. Otherwise, the tool ignores the derived range.

The Safety margin for design and derived min/max (%) parameter
specifies a range that differs from that defined by the derived range. For
example, a value of 20 specifies that a range of at least 20 percent larger is
desired. A value of -10 specifies that a range of up to 10 percent smaller is
acceptable. If this parameter is not visible in the Automatic data typing
for selected system pane, click the Configure link.

® The tool observes the simulation range only when the Simulation
min/max option is selected. Otherwise, the tool ignores the simulation
range.

The Safety margin for simulation min/max (%) parameter specifies

a range that differs from that defined by the simulation range. For
example, a value of 20 specifies that a range of at least 20 percent larger is
desired. A value of -10 specifies that a range of up to 10 percent smaller is
acceptable. If this parameter is not visible in the Automatic data typing
for selected system pane, click the Configure link.

To Propose Data Types

1 On the Settings pane, select either Propose fraction lengths for
specified word lengths or Propose word lengths for specified
fraction lengths.

2 If you have a safety margin to apply, set Safety margin for design and
derived min/max (%). For example, enter 10 for a 10% safety margin. If
this parameter is not visible in the Automatic data typing for selected
system pane, click the Configure link.

3 Click the Propose fraction lengths or Propose word lengths button

to generate a proposal, O

Note The Fixed-Point Tool does not alter your model when it proposes
data types.

If there are conflicts in your model, the Fixed-Point Tool displays the
Result Details dialog box.

9-41



9 Automatic Data Typing

9-42

If you do not see this warning, there are no conflicts in your model, go to
“Applying Proposed Data Types” on page 9-27.

Examining Results to Resolve Conflicts

You can examine each data type proposal using the Result Details dialog
box, which displays the rationale underlying the proposal. Also, this dialog
box describes potential issues or errors, and it suggests methods for resolving
them. To open the dialog box:

1 In the Contents pane, select an object that has proposed data types.

2 Click the Show details for selected result button @

The Result Details dialog box provides the following information about the
proposed data type, as appropriate.

Summary
Details which run the result is in and the current data type specified for
the selected object.

Proposed Data Type Summary

This section describes a data type proposal in terms of how it differs from
the object’s current data type. For cases when the Fixed-Point Tool does not
propose data types, this section provides an explanation. For example, the
data type might be locked against changes by the fixed-point tool.

Needs Attention

This section lists potential issues and errors associated with data type
proposals. It describes the issues and suggests methods for resolving them.
The dialog box uses the following icons to differentiate warnings from errors.

& Indicates a warning message.

@ Indicates an error message.
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Shared Data Type Summary

This section of the dialog box tells you that the selected object must share the
same data type as other objects in the model because of data type propagation
rules. For example, the inputs to a Merge block must have the same data
type. Therefore, the outputs of blocks that connect to these inputs must share
the same data type.

The dialog box provides a hyperlink that you can click to highlight the objects
that share data types in the model. To clear this highlighting, from the model
View menu, select Remove Highlighting.

The Fixed-Point Tool allocates an identification tag to objects that must share
the same data type. The tool displays this identification tag in the DTGroup
column for the object. To display only the objects that must share data types,
from the Fixed-Point Tool main toolbar, select the Show option. For more
information, see “Main Toolbar” in the fxptdlg reference documentation.

Constrained Data Type Summary

Some Simulink blocks are designed to accept only certain data types on some
ports. This section of the dialog box tells you when a block that connects to
the selected object has data type constraints that impact the proposed data
type of the selected object. The dialog box lists the blocks that have data type
constraints, provides details of the constrained data types, and links to the
blocks in the model.

Data Type Details

This section provides a table that lists a model object attributes that influence
its data type proposal.

Item Description

Currently Data type that an object currently specifies.
Specified Data

Type

Proposed Data Data type that the Fixed-Point Tool proposes for this
Type object.
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Item Description

Proposed Maximum value that the proposed data type can
Representable represent.

Maximum

Design Maximum | Design maximum value that an object specifies
using, e.g., its Output maximum parameter.

Simulation Maximum value that occurs during simulation.
Maximum
Simulation Minimum value that occurs during simulation.
Minimum

Design Minimum | Design minimum value that an object specifies using,
e.g., its Output minimum parameter.

Proposed Minimum value that the proposed data type can
Representable represent.
Minimum

The table also includes a column titled Percent Proposed Representable.
This column indicates the percentage of the proposed representable range
that each value covers. Overflows occur when values lie outside this range.

Shared Values. When proposing data types, the Fixed-Point Tool attempts
to satisfy data type requirements that model objects impose on one another.
For example, the Sum block provides an option that requires all of its inputs
to have the same data type. Consequently, the table might also list attributes
of other model objects that impact the data type proposal for the selected
object. In such cases, the table displays the following types of shared values:

e TInitial Values

Some model objects provide parameters that allow you to specify the
initial values of their signals. For example, the Constant block includes
a Constant value parameter that initializes the block output signal.
The Fixed-Point Tool uses initial values to propose data types for model
objects whose design and simulation ranges are unavailable. When data
type dependencies exist, the tool considers how initial values impact the
proposals for neighboring objects.
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® Model-Required Parameters

Some model objects require the specification of numeric parameters to
compute the value of their outputs. For example, the Table data parameter
of an n-D Lookup Table block specifies values that the block requires to
perform a lookup operation and generate output. When proposing data
types, the Fixed-Point Tool considers how this “model-required” parameter
value impacts the proposals for neighboring objects.

To Examine the Results and Resolve Conflicts
1 Click OK on the Result Details dialog box to close the dialog box.

2 On the Fixed-Point Tool toolbar, use the Show option to filter the results
to show Conflicts with proposed data types.

The Fixed-Point Tool lists its data type proposals in the Contents pane
under the ProposedDT column. The tool alerts you to potential issues for
each object in the list by displaying a green, yellow, or red icon.

& The proposed data type poses no issues for this object.
[ The proposed data type poses potential issues for this object.

& The proposed data type will introduce data type errors if applied
to this object.

3 Review and fix each [& error.

a Select the error, right-click and select Highlight Block In Model from
the context menu to identify which block has a conflict.

b Click the Show details for selected result button @ to open the
Result Details dialog box.

¢ Use the advice provided in the Needs Attention section of the Result
Details dialog box to resolve the conflict by fixing the problem in the
Simulink model.

4 Review the Result Details for the [ warnings and correct the problem
if necessary.
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5 You have changed the Simulink model, so the benchmark data is not up to

date. Click the Fixed-Point Tool Start button @ to rerun the simulation.

The Fixed-Point Tool warns you that you have not applied proposals. Click
the Ignore and Simulate button to continue.

6 Click the Propose fraction lengths or Propose word lengths button to
generate a data type proposal, Ol

7 Use the Show option on the Fixed-Point Tool toolbar to filter the results
to show All results.

Applying Proposed Data Types

After reviewing the data type proposals, you are ready to apply the proposed
data types to your model. The Fixed-Point Tool allows you to apply its data
type proposals selectively to objects in your model. Use the Accept check box
in the Contents pane to specify the proposals that you want to assign to
model objects. The check box indicates the status of a proposal:

¥  The Fixed-Point Tool will apply the proposed data type to this object.
By default, the tool selects the Accept check box when a proposal
differs from the object’s current data type.

[T The Fixed-Point Tool will ignore the proposed data type and leave the
current data type intact for this object.

[T No proposal exists for this object. This occurs, for example, when
the object specifies a data type inheritance rule or is locked against
automatic data typing.

To Apply Proposed Data Types

1 Examine each result. For more information about a particular result, select

the result and then click the Show details for selected result button 0
to display the Result Details dialog box.

2 If you do not want to accept the proposal for a result, clear the Accept
checkbox in the Fixed-Point Tool Contents pane for that result.
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Tip The Fixed-Point Tool enables you to customize its proposals before
applying them to your model. To do so, in the Contents pane, click a
ProposedDT cell and edit the data type expression. See documentation for
the fixdt function for information about specifying fixed-point data types.

3 Click the Apply accepted fraction lengths or Apply accepted word
lengths button B to write the proposed data types to the model.

Note If you have not fixed all the warnings in the model, the Fixed-Point
Tool displays a warning dialog box.
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Proposing Fraction Lengths

In this section...

“About the Feedback Controller Example Model” on page 9-48

“Proposing Fraction Lengths for a Feedback Controller Using Simulation
Range Data” on page 9-55

About the Feedback Controller Example Model

® “Opening the Feedback Controller Model” on page 9-48
e “About the Feedback Controller Model” on page 9-49

® “Simulation Setup” on page 9-50

e “Idealized Feedback Design” on page 9-51

e “Digital Controller Realization” on page 9-52

Opening the Feedback Controller Model
To open the Simulink feedback design model used for this tutorial, type
fxpdemo_feedback at the MATLAB command line.

The feedback design model opens.
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About the Feedback Controller Model
The Simulink model of the feedback design consists of the following blocks

and subsystems:
¢ Reference

This Signal Generator block generates a continuous-time reference signal.
It is configured to output a square wave.

* Sum
This Sum block subtracts the plant output from the reference signal.

e ZOH

The Zero-Order Hold block samples and holds the continuous signal. This
block is configured so that it quantizes the signal in time by 0.01 seconds.

¢ Analog to Digital Interface

The analog to digital (A/D) interface consists of a Data Type Conversion
block that converts a double to a fixed-point data type. It represents any
hardware that digitizes the amplitude of the analog input signal. In the
real world, its characteristics are fixed.
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e Controller

The digital controller is a subsystem that represents the software running
on the hardware target. Refer to “Digital Controller Realization” on page
9-52.

¢ Digital to Analog Interface

The digital to analog (D/A) interface consists of a Data Type Conversion
block that converts a fixed-point data type into a double. It represents any
hardware that converts a digitized signal into an analog signal. In the real
world, its characteristics are fixed.

* Analog Plant

The analog plant is described by a transfer function, and is controlled by
the digital controller. In the real world, its characteristics are fixed.

* Scope

The model includes a Scope block that displays the plant output signal.

Simulation Setup

To set up this kind of fixed-point feedback controller simulation, typically you
perform the following steps:

1 Identify all design components.

In the real world, there are design components with fixed characteristics
(the hardware) and design components with characteristics that you
can change (the software). In this feedback design, the main hardware
components are the A/D hardware, the D/A hardware, and the analog
plant. The main software component is the digital controller.

2 Develop a theoretical model of the plant and controller.

For the feedback design used in this tutorial, the plant is characterized by
a transfer function. The characteristics of the plant are unimportant for
this tutorial, and are not discussed.

The digital controller model used in this tutorial is described by a z-domain
transfer function and is implemented using a direct-form realization.
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3 Evaluate the behavior of the plant and controller.

You evaluate the behavior of the plant and the controller with a Bode plot.
This evaluation is idealized, because all numbers, operations, and states
are double-precision.

4 Simulate the system.

You simulate the feedback controller design using Simulink and Simulink
Fixed Point software. Of course, in a simulation environment, you can treat
all components (software and hardware) as though their characteristics
are not fixed.

Idealized Feedback Design

Open loop (controller and plant) and plant-only Bode plots for the “Scaling

a Fixed-Point Control Design” demo are shown in the following figure. The
open loop Bode plot results from a digital controller described in the idealized
world of continuous time, double-precision coefficients, storage of states, and
math operations.
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Bode Plots: Plant Only (dashed) and Open Loop (solid)
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The plant and controller design criteria are not important for the purposes of
this tutorial. The Bode plots were created using workspace variables produced
by a script named preload feedback.m.

Digital Controller Realization

In this simulation, the digital controller is implemented using the fixed-point
direct form realization shown in the following diagram. The hardware target
1s a 16-bit processor. Variables and coefficients are generally represented
using 16 bits, especially if these quantities are stored in ROM or global RAM.
Use of 32-bit numbers is limited to temporary variables that exist briefly in
CPU registers or in a stack.
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The realization consists of these blocks:

e Up Cast

Up Cast is a Data Type Conversion block that connects the A/D hardware
with the digital controller. It pads the output word of the A/D hardware
with trailing zeros to a 16-bit number (the base data type).

¢ Numerator Terms and Denominator Terms

Each of these Discrete FIR Filter blocks represents a weighted sum carried
out in the CPU target. The word size and precision used in the calculations
reflect those of the accumulator. Numerator Terms multiplies and
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accumulates the most recent inputs with the FIR numerator coefficients.
Denominator Terms multiples and accumulates the most recent delayed
outputs with the FIR denominator coefficients. The coefficients are stored
in ROM using the base data type. The most recent inputs are stored in
global RAM using the base data type.

Combine Terms

Combine Terms is a Sum block that represents the accumulator in the
CPU. Its word size and precision are twice that of the RAM (double bits).

Down Cast

Down Cast is a Data Type Conversion block that represents taking the
number from the CPU and storing it in RAM. The word size and precision
are reduced to half that of the accumulator when converted back to the
base data type.

Prev Out

Prev Out is a Unit Delay block that delays the feedback signal in memory
by one sample period. The signals are stored in global RAM using the
base data type.

Direct Form Realization. The controller directly implements this equation,

N N
y(k)= Zbiu(k—l)—Zaiy(k—l),
=0 =1

where

u(k — 1) represents the input from the previous time step.

y(k) represents the current output, and y(k — 1) represents the output from
the previous time step.

b, represents the FIR numerator coefficients.

a; represents the FIR denominator coefficients.

The first summation in y(k) represents multiplication and accumulation of the
most recent inputs and numerator coefficients in the accumulator. The second
summation in y(k) represents multiplication and accumulation of the most
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recent outputs and denominator coefficients in the accumulator. Because the
FIR coefficients, inputs, and outputs are all represented by 16-bit numbers
(the base data type), any multiplication involving these numbers produces a
32-bit output (the accumulator data type).

Proposing Fraction Lengths for a Feedback Controller
Using Simulation Range Data

e “Before You Begin” on page 9-55

e “Initial Guess at Scaling” on page 9-56
® “Data Type Override” on page 9-58

* “Automatic Data Typing” on page 9-59

Before You Begin

This example shows you how to use the Fixed-Point Tool to refine the scaling
of fixed-point data types associated with a feedback controller model (see
“About the Feedback Controller Example Model” on page 9-48). Although the
tool enables multiple workflows for converting a digital controller described in
ideal double-precision numbers to one realized in fixed-point numbers, this
example demonstrates the following approach:

1 “Initial Guess at Scaling” on page 9-56. Run an initial “proof of concept”
simulation using a reasonable guess at the fixed-point word size and
scaling. This task illustrates how difficult it is to guess the best scaling.

2 “Data Type Override” on page 9-58. Perform a global override of the
fixed-point data types using double-precision numbers. The Simulink
software logs the simulation results to the MATLAB workspace, and the
Fixed-Point Tool displays them.

3 “Automatic Data Typing” on page 9-59. Perform the automatic data typing
procedure, which uses the double-precision simulation results to propose
fixed-point scaling for appropriately configured blocks. The Fixed-Point
Tool allows you to accept and apply the scaling proposals selectively.
Afterward, you determine the quality of the results by examining the input
and output of the model’s analog plant.
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To begin, open both the fxpdemo_feedback model and the Fixed-Point Tool.

Initial Guess at Scaling

Initial guesses for the scaling of each block are already specified in each block
mask in the model. This task illustrates the difficulty of guessing the best
scaling.

1 In the Fixed-Point Tool Shortcuts to set up runs pane, click the

Model-wide no override and full instrumentation button to set:

® Data type override to Use local settings. This option enables each
of the model’s subsystems to use its locally specified data type settings.

¢ Fixed-point instrumentation mode to Minimums, maximums and
overflows.

® The run name to NoOverride.

In the Fixed-Point Tool, click the Simulate button @

The Simulink software simulates the fxpdemo_feedback model. Afterward,
the Fixed-Point Tool displays in its Contents pane the simulation results
for each block that logged fixed-point data. By default, it displays the
Simulation View of these results, you can customize this view by clicking
Show Details. For more information about the standard views provided
by the Fixed-Point Tool, see “Customizing the Contents Pane View” in

the fxptdlg function reference. For more information about customizing
views, see “The Model Explorer: Controlling Contents Using Views”.

The tool stores the results in the NoOverride run, denoted by the
NoOverride label in the Run column. The Fixed-Point tool highlights
the Up Cast block to indicate that there is an issue with this result. The
Saturations column for this result shows that the block saturated 23
times, which indicates a poor guess for its scaling.

Tip You can use the Show option in the main toolbar to view only blocks
that have Overflows.
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3 In the Contents pane of the Fixed-Point Tool, select the Transfer Fen block
named Analog Plant and then click the Plot of Signal button ZL

The Fixed-Point Tool plots the signal associated with the plant output.

-

File Edit View Inset Tools Desktop Window Help
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The preceding plot of the plant output signal reflects the initial guess at
scaling. The Bode plot design sought to produce a well-behaved linear
response for the closed-loop system. Clearly, the response is nonlinear.
Significant quantization effects cause the nonlinear features. An important
part of fixed-point design is finding a scaling that reduces quantization effects
to acceptable levels.
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Tip You can use the Fixed-Point Tool plotting tools to plot simulation results
associated with logged signal data. To view a list of all logged signals, use the
Show option in the main toolbar and select Signal logging results.

Data Type Override

Data type override mode enables you to perform a global override of the
fixed-point data types with double-precision data types, thereby avoiding
quantization effects. The Fixed-Point Tool will use these simulation results
when performing automatic scaling to propose higher fidelity fixed-point
scaling.

1 In the Fixed-Point Tool Shortcuts to set up runs pane, click the
Model-wide double override and full instrumentation button to set:

¢ Data type override to Double
¢ Data type override applies to to AL1 numeric types

¢ Fixed-point instrumentation mode to Minimums, maximums and
overflows

¢ The run name (in the Data collection pane Store results in run field)
to DoubleOverride

2 In the Fixed-Point Tool, click the Simulate button @

The Simulink software simulates the fxpdemo_feedback model in data
type override mode and stores the results as the DoubleOverride run.
Afterward, the Fixed-Point Tool displays in its Contents pane the
DoubleOverride run results along with those of the NoOverride run
that you generated previously (see “Initial Guess at Scaling” on page 9-56).
The SimDT (simulation data type) column for the DoubleOverride run
shows that the model’s blocks used a double data type during simulation.

3 In the Contents pane of the Fixed-Point Tool, select the Transfer Fen
block named Analog Plant in the NoOverride run, and then click the

Difference Plot of Signal button 5
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The Fixed-Point Tool plots both the DoubleOverride and NoOverride
versions of the signal associated with the plant output (upper axes), and
plots the difference between the active and reference versions of that signal
(lower axes). Compare the ideal (double data type) plant output signal
with its fixed-point version.

Tip You can use the Zoom tool "% to zoom in on an area of interest. By
default, synchronized zooming is enabled for the difference plot. Zooming
on either plot zooms both plots. For more information, see “Plot Interface”
in the fxptdlg Reference.

Difference Plot (NoOveride-DoubleQverride) ol -] 3]
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Automatic Data Typing

Using the automatic data typing procedure, you can easily maximize the
precision of the output data type while spanning the full simulation range.
For a complex model, the absence of such a procedure can make achieving
this goal tedious and time consuming.
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Note The Fixed-Point Tool yields meaningful automatic data typing results
when the maximum and minimum simulation values cover the full intended
operating range of your design.

Perform automatic data typing for the Controller block. This block is a
subsystem that represents software running on the target, and it requires
optimization.

1 In the Model Hierarchy pane of the Fixed-Point Tool, select the
Controller subsystem. In the Automatic data typing for selected
system pane, click the Configure link. Ensure that Simulation min/max
1s selected for Propose using information from design min/max and
then specify the Safety margin for simulation min/max parameter as
20, and then click Apply.

Because no design min/max information is supplied, the simulation
min/max data that was collected during the simulation run is used for
proposing data types. The Safety margin for simulation min/max (%)
parameter value multiplies the “raw” simulation values by a factor of 1.2.
Setting this parameter to a value greater than 1 decreases the likelihood
that an overflow will occur when fixed-point data types are being used. For
more information about how the Fixed-Point Tool calculates data type
proposals, see “Proposing Data Types” on page 9-20.

Because of the nonlinear effects of quantization, a fixed-point simulation
will produce results that are different from an idealized, doubles-based
simulation. Signals in a fixed-point simulation can cover a larger or
smaller range than in a doubles-based simulation. If the range increases
enough, overflows or saturations could occur. A safety margin decreases
the likelihood of this happening, but it might also decrease the precision of
the simulation.

2 In the Fixed-Point Tool,:

a Click the Propose fraction lengths button Ol

b In the Propose Data Types dialog box, select DoubleOverride, and
then click OK.
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The Fixed-Point Tool analyzes the scaling of all fixed-point blocks whose:

* Lock output data type setting against changes by the
fixed-point tools parameter is not selected.

® OQutput data type parameter specifies a generalized fixed-point
number.

® Data types are not inherited types.

The Fixed-Point Tool uses the minimum and maximum values stored
in the DoubleOverride run to propose each block’s scaling such that
the precision is maximized while the full range of simulation values is
spanned. The tool displays the proposed scaling in its Contents pane.
Now, it displays the Autoscaling View to provide information, such as
ProposedDT, ProposedMin, ProposedMax, which are relevant at
this stage of the fixed-point conversion.

Tip You can use the Show option in the main toolbar to view the groups
that must share data types. For more information, see fxptdlg in the
Simulink Reference.

3 Review the scaling that the Fixed-Point Tool proposes. You can choose to
accept the scaling proposal for each block by selecting the corresponding
Accept check box in the Contents pane. By default, the Fixed-Point
Tool accepts all scaling proposals that differ from the current scaling.
For this example, ensure that the Accept check box associated with the
DoubleOverride run is selected for each of the Controller subsystem’s
blocks.

4 In the Fixed-Point Tool, click the Apply accepted fraction lengths
button =8

The Fixed-Point Tool applies to the Controller subsystem’s blocks the
scaling proposals that you accepted in the previous step.

5 In the Model Hierarchy pane of the Fixed-Point Tool, select the
fxpdemo_feedback system.
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a In the Shortcuts to set up runs pane, click the Model-wide no

override and full instrumentation button to use the locally specified
data type settings.

In the Data collection pane, set Store results in run to FixedPoint
so that Fixed-Point Tool stores the results with a new run name and
does not overwrite the results for the initial fixed-point set up. Storing
the results in different runs allows you to compare the initial system
behavior with the behavior of the autoscaled model.

6 In the Fixed-Point Tool, click Simulate.

The Simulink software simulates the fxpdemo_feedback model using
the new scaling that you applied earlier. Afterward, the Fixed-Point
Tool displays in its Contents pane information about blocks that logged
fixed-point data. The SimDT (simulation data type) column for the
FixedPoint run shows that the Controller subsystem’s blocks used
fixed-point data types with the new scaling.

7 In the Model Hierarchy pane of the Fixed-Point Tool, select the
fxpdemo_feedback system.

a In the Contents pane, select the Transfer Fcn block named Analog

Plant for the FixedPoint run, and then click the Difference Plot of
Signal button 5

In the Difference Plot Selector dialog box, select DoubleOverride,
and then click OK.

The Fixed-Point Tool plots the fixed-point and double override versions
of the plant output signal, as well as their difference.
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Tip Optionally, you can zoom in to view the steady-state region with
greater detail. From the Tools menu of the figure window, select Zoom In
and then drag the pointer to draw a box around the area you want to view
more closely. For instance, the following figure shows a close-up view of a
portion of the previous plot.

The plant output signal represented by the fixed-point run achieves a
steady state, but a small limit cycle is present because of poor A/D design.
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In this section...

“How the Fixed-Point Tool Proposes Word Lengths” on page 9-64
“How to Propose Word Lengths” on page 9-66

“Proposing Word Lengths Based on Simulation Data” on page 9-67

How the Fixed-Point Tool Proposes Word Lengths

To use the Fixed-Point Tool to propose word lengths, you must specify the
target hardware and the fraction length requirements for data types in the
model. Select the fraction lengths based on the precision required for the
system that you are modeling. If you do not specify fraction lengths, the
Fixed-Point Tool sets the fraction length to zero. The Fixed-Point Tool uses
these specified fraction lengths to recommend the minimum word length for
fixed-point data types in the selected model or subsystem to avoid overflow
for the collected range information.

The proposal uses the following information:

® Design range information and range information that the Fixed-Point Tool
or Fixed-Point Advisor collects. This collected range information can be
either simulation range data or derived range data.

® The signedness and fraction lengths of data types specified for blocks,
signal objects.

® The signedness and fraction lengths of the default data types specified in
the Fixed-Point Tool or Fixed-Point Advisor.

® The embedded hardware implementation settings specified in the
Configuration Parameters dialog box.

How the Fixed-Point Tool Uses Range Information

The Fixed-Point Tool determines whether to use different types of range
information based on its availability and on the Fixed-Point Tool Automatic
data typing for selected system > Propose using information from
design min/max and pane Derived min/max and Simulation min/max
settings.
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Design range information always takes precedence over both simulation
and derived range data. When there is no design range information, the
Fixed-Point Tool uses the union of available simulation and derived range
data. If you specify safety margins, the Fixed-Point Tool takes these into
account.

For example, if a signal has a design range of [-10,10], the Fixed-Point
Tool uses this range for the proposal and ignores all simulation and derived
range information. If you specify a safety margin of 10% for design range, the
Fixed-Point Tool uses a range of [-11,11] for the proposal.

If the signal has no specified design information, but does have a simulation
range of [ -8,8] and a derived range of [ -2,2], the proposal uses the union
of the ranges, [ -8,8]. If you specify a safety margin of 50%, the proposal
uses a range of [-12, 12].

How the Fixed-Point Tool Uses Target Hardware Information

The Fixed-Point Tool calculates the ideal word length and then checks this
length against the embedded hardware implementation settings for the target
hardware. It uses the following rules:

Target Ideal Word Proposed Word | Notes

Hardware | Length Length

FPGA/ASIC | Ideal word Ideal word length | None
length=<128
Ideal word 128 Maximum word
length>128 length is 128
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Target Ideal Word Proposed Word | Notes
Hardware | Length Length
Embedded Ideal word char Rounds up word
Processor length=< character length
bit length for
the embedded
processor (char)
char <Ideal word short Rounds up word
length=< short length
bit length for
the embedded
processor (short)
short<Ideal word int Rounds up word
length=< integer length
bit length for
the embedded
processor (int)
int<Ideal word long Rounds up word
length=<long length
bit length for
the embedded
processor (long)
Ideal word long Maximum word
length>long length is the target

bit length for
the embedded
processor

hardware long

How to Propose Word Lengths

1 Specify the target hardware.

a In the model, select Simulation > Configuration Parameters.

b In the Configuration Parameters dialog box, select Hardware
Implementation.
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¢ On the Hardware Implementation pane, specify the Device vendor
and Device type, then click Apply.

2 On the Fixed-Point Tool Automatic data typing for selected system
pane, select Propose word lengths for specified fraction lengths. If
you cannot see this option, click Configure to display more options.

3 In the same pane:
¢ To use simulation min/max information only, clear Derived min/max.

¢ To use derived min/max information only, clear Simulation min/max.

4 If you have safety margins to apply, in the same pane, set Safety margin
for design and derived min/max (%) and Safety margin for design
and derived min/max (%), as applicable.

5 Click the Propose word lengths button to generate a proposal, s

Note The Fixed-Point Tool does not alter your model when it proposes
data types.

If there are conflicts in your model, the Fixed-Point Tool displays the
Result Details dialog box.

If you do not see this warning, there are no conflicts in your model. Review
the proposed word lengths,

Proposing Word Lengths Based on Simulation Data

This example shows how to use the Fixed-Point Tool to propose word lengths
for a model that implements a simple moving average algorithm. The model
already uses fixed-point data types, but they are not optimal. Simulate the
model and propose data types based on simulation data. To see how the target
hardware affects the word length proposals, first set the target hardware

to an embedded processor and propose word lengths. Then, set the target
hardware to an FPGA and propose word lengths.
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1 Open the ex_moving average model. At the MATLAB command line,
enter:

run(docpath(fullfile(docroot, 'toolbox', 'fixpoint', 'examples', 'ex_moving_average.mdl')))

W e moving avesge oo e
File Edit View Simulation Format Tools Help
LzES B~ =) » o= fi0 [Nomal M- g B EBE
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z
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Ready 89% FixedStepDiscrete

Some blocks in the model already have specified fixed-point data types.

Block Data Type Specified on Block
Dbl2Fixpt fixdt(1,16,10)

Gaint fixdt(1,32,17)

Gain2 fixdt(1,32,17)

Gain3 fixdt(1,32,17)

Gain4 fixdt(1,16,1)

Add1 fixdt(1,32,17)
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Block Data Type Specified on Block
Add2 fixdt(1,32,17)
Add3 fixdt(1,32,17)

2 Verify that the target hardware is an embedded processor.
a In the model, select Simulation > Configuration Parameters.

b In the Configuration Parameters dialog box, select Hardware
Implementation.

On the Hardware Implementation pane, the Device vendor is
Generic and the Device type is 16 bit embedded processor.

¢ Close the Configuration Parameters dialog box.
3 From the model Tools menu, select Fixed-Point Tool.

4 In the Shortcuts to set up runs pane, click the Model-wide double
override and full instrumentation button to set:

¢ Data type override to Double
¢ Data type override applies to to ALl numeric types

¢ Fixed-point instrumentation mode to Minimums, maximums and
overflows

¢ The run name (in the Data collection pane Store results in run field)
to DoubleOverride

Using these settings, the Fixed-Point Tool performs a global override of
the fixed-point data types with double-precision data types, thus avoiding
quantization effects. During simulation, the tool logs minimum value,
maximum value, and overflow data for all blocks in the current system or
subsystem in the run DoubleOverride.

5 Click the Fixed-Point Tool Simulate button g to run the simulation.

The Fixed-Point Tool simulates the model and displays the results in the
Contents pane in the run named DoubleOverride.
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Contents of: ex_maving_average™ (mmo-dbl)

Column View: | Simulation View ~ | show Details
MName B Run SimMin  SimMax SimDT DesignMin DesignMax  OwerflowWraps Saturations
=1 Addl : Accumulator DoubleOverride
1 addr: Qutput DoubleOverride
1 Addz: Accumulator DoubleQverride
I Addz2: Qutput DoubleOverride
=1 Add3 : Accumulator DoubleOverride
1 adds: Output DoubleOverride
[l pata Type Conversionl  DoubleQverride
= caint DoubleOverride
1 Gainz DoubleOverride
= Gain3 DoubleOverride
18] Gains DoubleOverride
131 outt DoubleOverride

6 In the Automatic data typing for selected system pane:
a Click Configure to display more options.

b Select Propose word lengths for specified fraction lengths, then
click Apply.

7 Click the Propose word lengths button, Ol
The Fixed-Point Tool uses available range data to calculate data type
proposals according to the following rules:

¢ Design minimum and maximum values take precedence over the
simulation range.

The Safety margin for design and derived min/max (%) parameter
specifies a range that differs from that defined by the design range. In
this example, no safety margins are set.

® The tool observes the simulation range because the Simulation
min/max option is selected.

The Safety margin for simulation min/max (%) parameter specifies
a range that differs from that defined by the simulation range. In this
example, no safety margins are set.

The Fixed-Point Tool analyzes the data types of all fixed-point blocks whose:

* Lock output data type setting against changes by the fixed-point
tools parameter is not selected.
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® OQutput data type parameter specifies a generalized fixed-point
number.

® Data types are not inherited types.

For each object in the model, the Fixed-Point Tool proposes the minimum
word length that avoids overflow for the collected range information.
Because the target hardware is a 16-bit embedded processor, the
Fixed-Point tool proposes word lengths based on the number of bits used
by the processor for each data type. For more information, see “How the
Fixed-Point Tool Uses Target Hardware Information” on page 9-65.

The tool proposes smaller word lengths for Gain4 and Gain4:Gain. The
tool calculated that their ideal word length is less than or equal to the
character bit length for the embedded processor (8), so the tool rounds up
the word length to 8.

| Contents of:  ex_moving_average® (mmo-dbl) |

Column View: |Autoscaling View + | Show Details

Mame - Run SimOT CompiledDT Accept ProposedDT  SpecifiedDT
13 Addl: Accumulator DoubleQverride ]
& Addi: output DoubleQverride [ fixdt(1,32,17)
[ Add2: Accumulator DoubleCverride ]
[ Add2: Output DoubleQverride ] findt(1,32,17)
[# Add3: Accumulator DoubleOverride [
[ Add3: Output DoubleQverride ] fisdt(1,32,17)
&3 Data Type Conversionl  DoubleOverride ] firndt(1,16,10)
& Gainl : Gain DoubleOverride =
& Gain1 DoubleQverride [ fixdt(1,32,17)
13 Gain : Gain DoubleCverride ]
12 Gain2 DoubleOverride ] findt(1,32,17)
& Gain3: Gain DoubleOverride =
I Gain3 DoubleCverride X
IE Gain4 : Gain DroubleQOverride findt(1,8,0)
IS Gaind DoubleCverride fiedt(1,8,1)
IS Outl DoubleCverride =
IE Unit Delayl DroubleQOverride |:|
& unit Delay2 DoubleQverride [

8 To see how the target hardware affects the word length proposal, change
the target hardware to FPGA/ASIC.

a In the model, select Simulation > Configuration Parameters.
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b In the Configuration Parameters dialog box, select Hardware
Implementation.

¢ On the Hardware Implementation pane, set Device vendor to
ASIC/FPGA. Simulink automatically sets the Device type to ASIC/FPGA.

d Click Apply and close the Configuration Parameters dialog box.

9 In the Fixed-Point Tool Automatic data typing for selected system
pane, click the Propose word lengths button.

Because the target hardware is an FPGA, there are no constraints on the
word lengths that the Fixed-Point Tool proposes. The word length for
Gain4:Gain is 3 and for Gain4 is 7.

| Contents of: ex_moving_average™ (mmo-dbl)

Column View: |Autoscaling View V] Show Details
MName - Run SimDOT CompiledDT Accept ProposedDT SpecifiedDT
[# Addl: Accumulator DoubleOverride ]
& Addi: Output DoubleQverride fixdt(1,22,17)
[ Add2: Accumulator DoubleCverride [}
[ Add2: Output DoubleQverride fixdt(1,22,17)
[ Add3: Accumulator DoubleCverride [}
[ Add3: output DoubleOverride findt(1,22,17)
% Data Type Conversionl  DoubleOverride findt(1,14,10)
13 Gainl : Gain DoubleCverride [}
I Gain1 DoubleOverride findt(1,20,17)
13 Gain : Gain DoubleCverride [}
12 Gain2 DoubleOverride fidt(1,19,17)
IE Gain3 : Gain DoubleQverride [}
IE Gain3 DoubleQverride
IE Gaind : Gain DoubleQverride fixdt(1,3,0)
IB Gaind DoubleCverride fixdt(1,7,1)
18 Cutl DoubleCverride = n/a nh
I# unit Delayt DoubleQverride 0
I# unit Delay2 DoubleQverride 0
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Proposing Data Types For a Model Using Results from
Multiple Simulations

In this section...

“About this Example” on page 9-73

“Running the Simulation” on page 9-76

About this Example

This example demonstrates how to use the Fixed-Point Tool to propose
fraction lengths for a model based on the simulation minimum and maximum
values captured over multiple simulations.

This example uses the ex_fpt _merge_demo.mdl model.
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§_| ex_fpt_merge_demo EI@
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About the Model

The model contains a sine wave input and two alternate noise sources,
band-limited white noise or random uniform noise. The software converts the
sine wave input and selected noise signal to fixed point and then adds them.
® The Data Type Conversion block Dbl-to-FixPtl converts the
double-precision noise input to the fixed-point data type fixdt(1,16,15).

The Data Type Conversion block FixPt-to-Dbl2 converts the
double-precision sine wave input to the fixed-point data type
fixdt(1,16,10).

The Add block Accumulator data type is fixdt(1,32,30) and Output
data type is fixdt(1,16,14).
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About the Procedure

In this example, you use the Fixed-Point Tool to merge the results from two
simulation runs. Merging results allows you to autoscale your model over the
complete simulation range.

The procedure consists of these tasks.

1 “Simulate Using Random Uniform Noise” on page 9-76. Using the
Fixed-Point Tool, you simulate the model with the random uniform noise
signal and observe the simulation minimum and maximum values for the
Add block. The Fixed-Point Tool uses these simulation settings:

¢ Fixed-point instrumentation mode: Minimums, maximums and
overflows

¢ Data type override: Double
® Data type override applies to: A11 numeric types

e Merge instrumentation results from multiple simulations is not
selected.

This run provides the simulation results for the random uniform noise
input only.

2 “Simulate Using Band-Limited White Noise” on page 9-77. You select the
band-limited white noise signal and run another simulation using the same
Fixed-Point Tool simulation settings. The Fixed-Point Tool overwrites the
results of the previous run.

This run provides the simulation range for the band-limited white noise
input only.

3 “Merge Results” on page 9-77. You configure the Fixed-Point Tool to merge
results. Select the random uniform noise input again, rerun the simulation,
and observe the simulation results for the Add block.

This run provides the simulation range based on the entire set of input
data for both noise sources.

4 “Propose Fraction Lengths Based on Merged Results” on page 9-77. The
Fixed-Point Tool uses the merged simulation minimum and maximum
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values to propose scaling for each block to ensure maximum precision while
spanning the full range of simulation values.

Running the Simulation

Simulate Using Random Uniform Noise

1 Open the ex_fpt_merge_demo model. At the MATLAB command line,
enter:

run(docpath(fullfile(docroot, 'toolbox', 'fixpoint', 'examples’', 'ex_fpt_merge_demo.mdl')))

2 From the model main menu, select Tools > Fixed-Point Tool.

3 In the Fixed-Point Tool Shortcuts to set up runs pane, click the
Model-wide double override and full instrumentation button to set:

¢ Data type override to Double. This option enables each of the model’s
subsystems to use its locally specified data type settings.

* Fixed-point instrumentation mode to Minimums, maximums and
overflows.

¢ The run name to DoubleOverride.
4 In the Fixed-Point Tool, click the Simulate button g

The Simulink software simulates the ex_fpt_merge_demo model, using the
random uniform noise signal. Afterward, the Fixed-Point Tool Contents
pane displays the simulation results for each block that logged fixed-point
data. The tool stores the results in a run named DoubleOverride, denoted
by the DoubleOverride label in the Run column.

5 Note the SimMin and SimMax values for the Add block.
SimMin is -3.5822

SimMax is 2.7598
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Simulate Using Band-Limited White Noise

1 In the model, double-click the switch to select the band-limited white
noise signal.

2 In the Fixed-Point Tool, click the Simulate button.

The Simulink software simulates the ex_fpt_merge_demo model, now
using the band-limited white noise signal.

3 Note the changed values for SimMin and SimMax for the Add block.
SimMin is now-2.5317

SimMax is now 3.1542

Merge Results

1 In the model, double-click the switch to select the random uniform noise
signal.

2 In the Fixed-Point Tool Data collection pane, select Merge
instrumentation results from multiple simulations, click Apply and
rerun the simulation.

3 Note that the SimMin and SimMax values for the Add block now cover
the entire simulation range for both the random uniform and band-limited
white noise signals.

SimMin is -3.5822

SimMax is 3.1542

Propose Fraction Lengths Based on Merged Results

1 In the Automatic data typing for selected system pane, click the
Propose fraction lengths button.

The Fixed-Point Tool analyzes the data types of all fixed-point blocks whose:
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* Lock output data type setting against changes by the fixed-point
tools parameter is not selected.

® OQutput data type parameter specifies a generalized fixed-point
number.

® Data types are not inherited.

The Fixed-Point Tool uses the merged minimum and maximum values to
propose fraction lengths for each block. These values ensure maximum
precision while spanning the full range of simulation values. The tool
displays the proposed data types in the Contents pane.

Contents of:  ex_Fpt_merge_demo™ {mmo-dbl) /__—_ ‘\ |

| Iarne

f |Run ISimDT ISimMin ISimMax |SpecifiedDT /‘lproposedDT IAccept IDesignMin IProposedMin |Pr0posedl\‘1§\

[ Add : Accumulator
[ add: Cutput
[ Band-Limited White Noise/Output

IE Biand-Limited White Moise/Oukput ;.

IE. Data Type Conversion

IE Data Type Conversionl

[ Manual Switch/Constant

[ Manual SwitchyS-Function
[ Manual SwitchSwitchControl

Fidtb(1, 52, 23)
et 1,16,13)

Fixdb(1, 16, 13)
fixdt(1,16,15)
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Range Analysis

¢ “How Range Analysis Works” on page 10-2

¢ “Deriving Ranges” on page 10-7

* “Viewing Derived Range Information in the Fixed-Point Tool” on page 10-10
¢ “Range Analysis Examples” on page 10-11

¢ “Unsupported Simulink Software Features” on page 10-25

e “Supported and Unsupported Simulink Blocks” on page 10-27
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How Range Analysis Works

10-2

In this section...

“Prerequisites” on page 10-2
“Analyzing a Model with Range Analysis” on page 10-2
“Automatic Stubbing” on page 10-5

“Model Compatibility with Range Analysis” on page 10-6

Prerequisites

Range analysis:

¢ Requires a Simulink Fixed Point license.

¢ Does not run on Mac platforms.

Analyzing a Model with Range Analysis

The model that you want to analyze must be compatible with range analysis.
If your model is not compatible, either replace unsupported blocks or divide
the model so that you can analyze the parts of the model that are compatible.
For more information, see “Model Compatibility with Range Analysis” on
page 10-6.

The Simulink Fixed Point software performs a static range analysis of your
model to derive minimum and maximum range values for signals in the
model. The software analyzes the model behavior and computes the values
that can occur during simulation for each block Outport. The range of these
values is called a derived range.

The software statically analyzes the ranges of the individual computations in
the model based on:

e Specified design ranges, known as design minimum and maximum values,
for example, minimum and maximum values specified for:
= Inport and Outport blocks
= Block outputs
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= Input, output, and local data used in MATLAB Function and Stateflow
Chart blocks

= Simulink data objects (Simulink.Signal and Simulink.Parameter
objects)

¢ Inputs

e The semantics of each calculation in the blocks

If the model contains objects that the analysis cannot support, where possible,
the software uses automatic stubbing. For more information, see “Automatic
Stubbing” on page 10-5.

The range analysis tries to narrow the derived range by using all the specified
design ranges in the model. The more design range information you specify,
the more likely the range analysis is to succeed. As the software performs the
analysis, it derives new range information for the model. The software then
attempts to use this new information, together with the specified ranges, to
derive ranges for the remaining objects in the model.

For models that contain floating-point operations, range analysis might
report a range that is slightly larger than expected. This difference is due to
rounding errors because the software approximates floating-point numbers
with infinite-precision rational numbers for analysis and then converts to
floating point for reporting.
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The following table summarizes how the analysis derives range information
and provides links to examples.

When...

How the Analysis
Works

Examples

You specify design
minimum and
maximum data for
a block output.

The derived range at
the block output is
based on these specified
values and on the
following values for
blocks connected to its
inputs and outputs:

¢ Specified minimum
and maximum values

® Derived minimum
and maximum values

“Deriving Ranges for
an Add Block” on page
10-11

A parameter on a block
has initial conditions
and a design range.

The analysis takes both
factors into account by
taking the union of the
design range and the
initial conditions.

“Using Block Initial
Conditions” on page
10-13

The model contains
a global tunable
parameter with a
specified range. (See
“Global Tunable
Parameters”)

The analysis takes
into account the
range specified for
the parameter and
ignores the value.

“Using Design Range
Information for
Simulink.Parameter
Objects” on page 10-15

The model contains
a global nontunable
parameter with a
specified range.

The analysis does not
take into account the
range specified for the
parameter. Instead,
it uses the parameter
value.

“Using Design Range
Information for
Simulink.Parameter
Objects” on page 10-15
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When...

How the Analysis
Works

Examples

The model contains
insufficient design
range information.

The analysis cannot
determine derived
ranges. You must
specify more design
range information and
rerun the analysis.

“Providing More Design
Range Information” on
page 10-20

The analysis results
might depend on block
sorting order which
determines the order
in which the software
analyzes the blocks.
For more information,
see “Controlling and
Displaying the Sorted
Order” in the Simulink
documentation.

The model contains
conflicting design range
information.

The analysis cannot
determine the derived
minimum or derived
maximum value for an
object. The Fixed-Point
Tool generates an
error. To fix this error,
examine the design
ranges specified in
the model to identify
inconsistent design
specifications. Modify
them to make them
consistent.

“Fixing Design Range
Conflicts” on page 10-22

Automatic Stubbing

What is Automatic Stubbing?

Automatic stubbing is when the software considers only the interface of the
unsupported objects in a model, not their actual behavior. Automatic stubbing
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lets you analyze a model that contains objects that the Simulink Fixed Point
software does not support. However, if any unsupported model element
affects the derivation results, the analysis might achieve only partial results.

How Automatic Stubbing Works

If you enable automatic stubbing, when the range analysis comes to an
unsupported block, the software ignores ("stubs") that block. The analysis
ignores the behavior of the block. As a result, the block output can take any
value.

The software cannot “stub” all Simulink blocks, such as the Integrator block.
See the blocks marked “not stubbable” in “Supported and Unsupported
Simulink Blocks” on page 10-27.

Model Compatibility with Range Analysis

To verify that your model is compatible with range analysis, see:

¢ “Unsupported Simulink Software Features” on page 10-25
e “Supported and Unsupported Simulink Blocks” on page 10-27
¢ “Limitations of Support for Model Blocks” on page 10-36
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Deriving Ranges

1 In Simulink, open your model and set it up for use with the Fixed-Point
Tool. For more information, see “Prerequisites for Automatic Data Typing
Using Derived Data” on page 9-35.

2 From the Simulink Tools menu, select Fixed-Point Tool.

3 In the Fixed-Point Tool Model Hierarchy pane, select the system or
subsystem of interest.

4 If you have a floating-point model, use the Fixed-Point Advisor to prepare
the model for conversion.

a From the Simulink Tools menu, select Fixed-Point Tool.

b In the Fixed-Point Tool Model Hierarchy pane, select the system or
subsystem of interest.

¢ Run each task in the Fixed-Point Advisor. For more information, see
Chapter 12, “Fixed-Point Advisor Reference”.

The Fixed-Point Advisor:
® Checks the model against fixed-point guidelines.
¢ Identifies unsupported blocks.

* Removes output data type inheritance from blocks that use floating-point
inheritance.

* Allows you to promote simulation minimum and maximum values
to design minimum and maximum values. This capability is useful
if you have not specified design ranges and you have simulated the
model with inputs that cover the full intended operating range. For
more information, see “Specify block minimum and maximum values”
on page 12-33.

5 In the Settings for selected system pane, set Data type override to
Double, then click Apply.

Using this setting, the Fixed-Point Tool derives ranges for the full range.
Otherwise, the tool uses the representable range of the data type specified
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on the block to derive a narrower range. The tool then propagates this
narrower range through the model.

6 Optionally, in the Data collection pane Store results in run field,
specify a run name. Specifying a unique run name avoids overwriting
results from previous runs.
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7 In the Fixed-Point Tool, click Derive min/max values for model.

The analysis runs and tries to derive range information for objects in the
selected system. Your next steps depend on the analysis results.

Analysis Results

Fixed-Point Tool
Behavior

Next Steps

For More
Information

Successfully derives
range data for the
model.

Displays the derived
minimum and
maximum values
for the blocks in the
selected system.

Review the derived
ranges to determine
if the results are
suitable for proposing
data types. If not,
you must specify
additional design
information and rerun
the analysis.

“Viewing Derived
Range Information in
the Fixed-Point Tool”
on page 10-10

Fails because the
model contains blocks
that the software does
not support.

Generates an

error and provides
information about the
unsupported blocks.

To fix the error,
review the error
message information
and replace the
unsupported blocks.

“Model Compatibility
with Range Analysis”
on page 10-6

Cannot derive range
data because the
model contains
conflicting design
range information.

Generates an error.

To fix this error,
examine the design
ranges specified in
the model to identify
inconsistent design
specifications. Modify
them to make them
consistent.

“Fixing Design Range
Conflicts” on page
10-22

Cannot derive range
data for an object
because there is
insufficient design
range information

specified on the model.

Highlights the results
for the object.

Examine the model
to determine which
design range
information is
missing.

“Providing More
Design Range
Information” on page
10-20
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Viewing Derived Range Information in the Fixed-Point Tool

After you use the Fixed-Point Tool to derive ranges for a model, the
Fixed-Point Tool Contents pane displays the derived minimum and
maximum values for each object in the selected system.
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If the analysis cannot derive a minimum or maximum value, the Fixed-Point
Tool highlights the result. To fix the issue, examine the model to identify
which objects have no specified design ranges and add this information. See
“Insufficient Design Range Information” on page 10-18.

‘ Contents of:  ex_derived_min_max_4 (mmo-dbl)

Column View: | Derived Min/Max View * | Show Details

Na?ne Run CompiledDT CompiledDesignMin  CompiledDesignMax  DerivedMin  DerivedMax

Il Gain  DoubleOverride

EI Outl  DoubleOverride
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Range Analysis Examples

In this section...

“Deriving Ranges for an Add Block” on page 10-11
“Using Block Initial Conditions” on page 10-13

“Using Design Range Information for Simulink.Parameter Objects” on
page 10-15

“Insufficient Design Range Information” on page 10-18

“Providing More Design Range Information” on page 10-20

“Fixing Design Range Conflicts” on page 10-22

Deriving Ranges for an Add Block

This example shows how the range analysis narrows the derived range for the
Outport block. This range is based on the range derived for the Add block
using the design ranges specified on the two Inport blocks and the design
range specified for the Add block.

1 Open the ex_derived_min_max_1 model. At the MATLAB command line,
enter:

run(docpath(fullfile(docroot, 'toolbox', 'fixpoint', 'examples', 'ex_derived_min_max_1.mdl"')))
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E ex_dernved_min_max_1 EI@

File Edit WView Simulation Format Tools Help

== = L [ ] |1D.E' |N|:|rrnal L

In1
Min=-50
Ma=100 .

y
Add Cut1
Min=125

Maoc=55

In2
Min=-E0
Max=35

Ready 100% T=0.00 FixedStepDiscrete

The model uses block annotations to display the specified design minimum
and maximum values for each block.

® In1 design range is [-50,100].
® In2 design range is [-50,35].
® Add block design range is [125,55].

Tip To edit block annotations, right-click the block and, from the context
menu, select Block Properties. In the Block Properties dialog box,
select the Block Annotation tab. For more information, see “Block
Annotation Pane” in the Simulink documentation.

From the Simulink Tools menu, select Fixed-Point Tool.

In the Settings for selected system pane, set Data type override to
Double, then click Apply.
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The Fixed-Point Tool derives ranges for the full range. If you do not set
Data type override to Double, the tool uses the representable range of the
data type specified on the block to derive a narrower range and propagates
this narrower range through the model.

4 In the Fixed-Point Tool, click the Derive min/max values for model
button.

To calculate the derived range at the Add block input, the software uses
the design minimum and maximum values specified for the Inport blocks,
[-50,100] and [-50,35]. The derived range at the Add block input is
[-85,150].

In the Contents pane, the Fixed-Point Tool displays the derived and design
minimum and maximum values for the blocks in the selected system.

® The derived range for the Add block output signal is narrowed to
[-85,55]. This derived range is the intersection of the range derived
from the block inputs, [-85,150] and the design minimum and
maximum values specified for the block output, [-125,55].

® The derived range for the Outport block Out1 is [ -85,55], the same as
the Add block output.

Using Block Initial Conditions

This example shows how range analysis takes into account block initial
conditions.

1 Open the ex_derived min_max_2 model. At the MATLAB command line,

enter:

run(docpath(fullfile(docroot, 'toolbox"', 'fixpoint', 'examples', 'ex_derived_min_max_2.mdl')))
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File Edit Wiew Simulation | Format | Tools Help
O eEEE £ p = [100  |Nomal
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In1 2 Cut1
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Read 1003 FixedStepDiscrete
¥ P

The model uses block annotations to display the specified design minimum
and maximum values for the Inport block and the initial conditions for
the Unit Delay block.

® In1 design range is [5,10].
e Unit Delay block initial condition is 0.

Tip To edit block annotations, right-click the block and, from the context
menu, select Block Properties. In the Block Properties dialog box,
select the Block Annotation tab. For more information, see “Block
Annotation Pane” in the Simulink documentation.

2 From the Simulink Tools menu, select Fixed-Point Tool.
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3 In the Settings for selected system pane, set Data type override to
Double, then click Apply.

The Fixed-Point Tool derives ranges for the full range. If you do not set
Data type override to Double, the tool uses the representable range of the
data type specified on the block to derive a narrower range and propagates
this narrower range through the model.

4 In the Fixed-Point Tool, click Derive min/max values for model.

In the Contents pane, the Fixed-Point Tool displays the derived minimum
and maximum values for the blocks in the model.

The derived minimum and maximum range for the Outport block, Out1,
is [0, 10] . The range analysis derives this range by taking the union of
the initial value, 0, on the Unit Delay block and the design range on the
block, [5,10].

5 Change the initial value of the Unit Delay block to 7.
a Double-click the Unit Delay block.

b In the Block Parameters dialog box, set Initial conditions to 7,
then click OK.

¢ In the Fixed-Point Tool, click the Derive min/max values for model
button.

Because the analysis takes the union of the initial conditions, 7, and the
design range, [5,10], on the Unit Delay block, the derived range for the
block is still [5,10].

Using Design Range Information for
Simulink.Parameter Objects

This example shows how the range analysis takes into account design
range information for Simulink.Parameter objects only if they are global
tunable parameters. (See “Global Tunable Parameters” in the Simulink
documentation.) Otherwise, the analysis uses the value of the parameter.

1 Open the ex_derived_min_max_3 model. At the MATLAB command line,
enter:
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run(docpath(fullfile(docroot, 'toolbox"', 'fixpoint', 'examples', 'ex_derived_min_max_3.mdl')))
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The model uses block annotations to display the specified design minimum
and maximum values for the Inport blocks. The design range for all Inport
blocks is [1,2].
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Tip To edit block annotations, right-click the block and, from the context
menu, select Block Properties. In the Block Properties dialog box,
select the Block Annotation tab. For more information, see “Block
Annotation Pane” in the Simulink documentation.

From the Simulink Tools menu, select Fixed-Point Tool.

In the Settings for selected system pane, set Data type override to
Double , then click Apply.

The Fixed-Point Tool derives ranges for the full range. If you do not set
Data type override to Double, the tool uses the representable range of the
data type specified on the block to derive a narrower range and propagates
this narrower range through the model.

In the Fixed-Point Tool, click the Derive min/max values for model
button.

In the Contents pane, the Fixed-Point Tool displays the derived minimum
and maximum values for the blocks in the model.

Block Derived Reason

Range
Gain1 [2,4] The gain parameters specified on Gain blocks
Gain2 [2,4] Gain1 and Gain2 are Simulink.Parameter

objects that have their storage class specified
as Auto. They are non-tunable parameters. In
this case, the range analysis uses the value
of the Simulink.Parameter object, which is
2, and ignores the design range specified for
these parameters.

Gain3 [1,20] The Simulink.Parameter objects that specify
Gain4 [1,20] the gain parameters for these Gain blocks.
are tunable parameters. The range analysis
takes into account the design range, [1,10],
specified for these parameters.
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enter:

Insufficient Design Range Information

This example shows that if the analysis cannot derive range information
because there is insufficient design range information, you can fix the issue
by providing additional input design minimum and maximum values.

1 Open the ex_derived_min_max_4 model. At the MATLAB command line,

run(docpath(fullfile(docroot, 'toolbox"', 'fixpoint', 'examples', 'ex_derived_min_max_4.mdl')))
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The model uses block annotations to display the specified design minimum

and maximum values for the blocks in the model.

¢ The Inport block In1 has a design minimum of -1 but no specified
maximum value, as shown by the annotation, Max=[1].

® The Gain block has a design range of [-1.5,1.5].

® The Outport block Out1 has no design range specified, as shown by the

annotations, Min=[], Max=[1].
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Tip To edit block annotations, right-click the block and, from the context
menu, select Block Properties. In the Block Properties dialog box,
select the Block Annotation tab. For more information, see “Block
Annotation Pane” in the Simulink documentation.

From the Simulink Tools menu, select Fixed-Point Tool.

In the Settings for selected system pane, set Data type override to
Double, then click Apply.

The Fixed-Point Tool derives ranges for the full range. If you do not set
Data type override to Double, the tool uses the representable range of the
data type specified on the block to derive a narrower range and propagates
this narrower range through the model.

In the Fixed-Point Tool, click the Derive min/max values for model
button.

In the Contents pane, the Fixed-Point Tool displays the derived minimum
and maximum values for the blocks in the model. The range analysis is
unable to derive a maximum value for the Inport block, In1. The tool
highlights this result.

Contents of:  ex_derived_min_max_4 (mmo-dbl)

Column View: [Derived MinMax View * | Show Details
NaFne Run CompiledDT CompiledDesignMin CompiledDesignMax  DerivedMin  DerivedMax
71 Gain DoubleOverride

1-1 double
El outt  DoubleOverride

To fix the issue, specify a design maximum value for In1:
a In the model, double-click the Inport block, In1.

b In the block parameters dialog box, select the Signal Attributes tab.
¢ On this tab, set Maximum to 1 and click OK.
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The model displays the updated maximum value in the block annotation

for Int.

6 In the Fixed-Point Tool, click Derive min/max values for model to rerun
the range analysis.

The range analysis can now derive ranges for the Inport and Gain blocks.

Block Derived Reason
Range

Inport [-1,1] Uses specified design range on the block.

In1

Gain [-1.5,1.5] | The design range specified on the Gain block
1s[-1.5,1.5]. The derived range at the block
inputis [ -1,1] (the derived range at the output
of In1). Therefore, because the gain is 2, the
derived range at the Gain block output is the
intersection of the propagated range, [-2,2],
and the design range, [-1.5,1.5].

Outport [-1.5,1.5] | Same as Gain block output because no locally

In2 specified design range on Outport block.

Providing More Design Range Information

This example shows that if the analysis cannot derive range information
because there is insufficient design range information, you can fix the issue
by providing additional output design minimum and maximum values.

1 Open the ex_derived_min_max_5 model. At the MATLAB command line,

enter:

run(docpath(fullfile(docroot, 'toolbox', 'fixpoint', 'examples', 'ex_derived_min_max_5.mdl"')))
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The model uses block annotations to display the specified design minimum

and maximum values for the blocks in the model.

® The Inport block In1 has a design range of -10,20.

® The rest of the blocks in the model have no specified design range.

Tip To edit block annotations, right-click the block and, from the context
menu, select Block Properties. In the Block Properties dialog box,
select the Block Annotation tab. For more information, see “Block

Annotation Pane” in the Simulink documentation.

From the Simulink Tools menu, select Fixed-Point Tool.

In the Settings for selected system pane, set Data type override to

Double , then click Apply.

The Fixed-Point Tool derives ranges for the full range. If you do not set
Data type override to Double, the tool uses the representable range of the
data type specified on the block to derive a narrower range and propagates

this narrower range through the model.
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4 In the Fixed-Point Tool, click the Derive min/max values for model
button.

In the Contents pane, the Fixed-Point Tool displays the derived minimum
and maximum values for the blocks in the model. Because one of the Add
block inputs is fed back from its output, the analysis is unable to derive an
output range for the Add block or for any of the blocks connected to this
output. The Fixed-Point Tool highlights these results.

Contents of; ex_derived_min_max_5* {(dbl)

Column View: [Derived MinMax View - ] Show Details

Name} Run CompiledDT CompiledDesignMin  CompiledDesignMax  DerivedMin Derivedhlax

5 To fix the issue, specify design minimum and maximum values for Out1:
a In the model, double-click the Outport block, Out1.
b In the block parameters dialog box, select the Signal Attributes tab.
¢ On this tab, set Minimum to -20 and Maximum to 40 and click OK.

6 In the Fixed-Point Tool, click Derive min/max values for model to rerun
the range analysis.

The range analysis uses the minimum and maximum values specified for
Out1, [-20,40] and the gain value of Gain3, 2, to derive an input range for
Gain3, [-10,20]. Because the input of Gain3 feeds back to the input of the
Add block, the analysis now derives ranges for all objects in the model.

Fixing Design Range Conflicts

This example shows how to fix design range conflicts. If you specify conflicting
design minimum and maximum values in your model, the range analysis
software reports an error. To fix this error, examine the design ranges
specified in the model to identify inconsistent design specifications. Modify
them to make them consistent. In this example, the output design range
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specified on the Outport block conflicts with the input design ranges specified
on the Inport blocks.

1 Open the ex_range_conflict model. At the MATLAB command line,

enter:

run(docpath(fullfile(docroot, 'toolbox', 'fixpoint', 'examples', 'ex_range_conflict.mdl')))

E| ex_range_conflict EI@
File Edit View Simulation Format Tools Help
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Wizt
Ready 89% FixedStepDiscrete

The model uses block annotations to display the specified design minimum
and maximum values for the blocks in the model.

® The Inport blocks In1 and In2 have a design range of [-1,1].

® The Outport block Out1 has a design range of [10,20].

Tip To edit block annotations, right-click the block and, from the context
menu, select Block Properties. In the Block Properties dialog box,
select the Block Annotation tab. For more information, see “Block
Annotation Pane” in the Simulink documentation.
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2 From the Simulink Tools menu, select Fixed-Point Tool.

3 In the Settings for selected system pane, set Data type override to

Double , then click Apply.

The Fixed-Point Tool derives ranges for the full range. If you do not set
Data type override to Double, the tool uses the representable range of the
data type specified on the block to derive a narrower range and propagates
this narrower range through the model.

In the Fixed-Point Tool, click the Derive min/max values for model
button.

The Fixed-Point Tool generates an error because the range analysis fails.
It reports an error because the derived range for the Sum block, [-2,2] is
outside the specified design range for the Outport block, [10,20].

Close the error dialog box.

To fix the conflict, change the design range on the Outport block to [-10, 20]
so that this range includes the derived range for the Sum block.

a In the model, double-click the Outport block.
b In the block parameters dialog box, click the Signal Attributes tab.
¢ On this tab, set Minimum to -10 and click OK.

7 In the Fixed-Point Tool, click Derive min/max values for model to rerun

the range analysis.

The range analysis derives a minimum value of -2 and a maximum value
of 2 for the Outport block.
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Unsupported Simulink Software Features

The software does not support the following Simulink software features.
Avoid using these unsupported features.

Not Supported

Description

Variable-step solvers

The software supports only fixed-step solvers.

For more information, see “Choosing a Fixed-Step
Solver” in the Simulink documentation.

Callback functions

The software does not execute model callback
functions during the analysis. The results that the
analysis generates may behave inconsistently with
the expected behavior.

¢ [f a model or any referenced model calls a callback
function that changes any block parameters,
model parameters, or workspace variables, the
analysis does not reflect those changes.

¢ Changing the storage class of base workspace
variables on model callback functions or mask
initializations is not supported.

e (Callback functions called prior to analysis,
such as the PreLoadFcn or PostLoadFcn model
callbacks, are fully supported.

Model callback
functions

The software only supports model callback functions
if the InitFcn callback of the model is empty.

Algebraic loops

The software does not support models that contain
algebraic loops.

For more information, see “Algebraic Loops” in the
Simulink documentation.

Masked subsystem
1nitialization
functions

The software does not support models whose masked
subsystem initialization modifies any attribute of
any workspace parameter.
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Not Supported

Description

Complex signals

The software supports only real signals.

For more information, see “Complex Signals” in the
Simulink documentation.

Variable-size signals

The software does not support variable-size signals.
A variable-size signal is a signal whose size (number
of elements in a dimension), in addition to its values,
can change during model execution.

For more information, see “Working with
Variable-Size Signals” in the Simulink
documentation.

Arrays of buses

The software does not support arrays of buses.

For more information, see “Combining Buses into an
Array of Buses” in the Simulink documentation.

Multiword
fixed-point data

types

The software does not support multiword fixed-point
data types.

Nonfinite data

The software does not support nonfinite data (for
example, NaN and Inf) and related operations.

Signals with nonzero
sample time offset

The software does not support models with signals
that have nonzero sample time offsets.

Models with no
output ports

The software only supports models that have one or
more output ports.
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Supported and Unsupported Simulink Blocks

Overview of Simulink Block Support

The following tables summarize the analysis support for Simulink blocks.
Each table lists all the blocks in each Simulink library and describes support
information for that particular block. A dash (—) indicates that the software
supports that block under all conditions. If the software does not support a
given block, where possible, automatic stubbing considers the interface of the
unsupported blocks, but not their behavior, during the analysis. However, if
any of the unsupported blocks affect the simulation outcome, the analysis may
achieve only partial results. If the analysis cannot use automatic stubbing for
a block, the block is marked as “not stubbable”. For more information, see
“Automatic Stubbing” on page 10-5.

Additional Math and Discrete Library

The software supports all blocks in the Additional Math and Discrete library.

Commonly Used Blocks Library

The Commonly Used Blocks library includes blocks from other libraries.
Those blocks are listed under their respective libraries.

Continuous Library

Block Support Notes
Derivative Not supported
Integrator Not supported and not stubbable

Integrator Limited

Not supported and not stubbable

PID Controller

Not supported

PID Controller (2 DOF)

Not supported

Second Order Integrator

Not supported and not stubbable

Second Order Integrator Limited

Not supported and not stubbable

State-Space

Not supported
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Block

Support Notes

Transfer Fen

Not supported

Transport Delay

Not supported

Variable Time Delay

Not supported

Variable Transport Delay

Not supported

Zero-Pole Not supported
Discontinuities Library
The software supports all blocks in the Discontinuities library.
Discrete Library

Block Support Notes

Delay =

Difference —

Discrete Derivative

Discrete Filter

The software analyzes through the filter. It does not
derive any range information for the filter.

Discrete FIR Filter

The software analyzes through the filter. It does not
derive any range information for the filter.

Discrete PID Controller

Discrete PID Controller (2 DOF)

Discrete State-Space

Not supported

Discrete Transfer Fen

Discrete Zero-Pole

Not supported

Discrete-Time Integrator

First-Order Hold

Memory




Supported and Unsupported Simulink® Blocks

Block

Support Notes

Tapped Delay

Transfer Fen First Order

Transfer Fen Lead or Lag

Transfer Fen Real Zero

Unit Delay

Zero-Order Hold

Logic and Bit Operations Library
The software supports all blocks in the Logic and Bit Operations library.

Lookup Tables Library

Block

Support Notes

Cosine

Direct Lookup Table (n-D)

Interpolation Using Prelookup

Not supported when:

¢ The Interpolation method parameter is Linear and
the Number of table dimensions parameter is greater
than 4.

or
® The Interpolation method parameter is Linear and

the Number of sub-table selection dimensions
parameter is not 0.

1-D Lookup Table

Not supported when the Interpolation method or the
Extrapolation method parameter is Cubic Spline.

2-D Lookup Table

Not supported when the Interpolation method or the
Extrapolation method parameter is Cubic Spline.
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Block

Support Notes

n-D Lookup Table

Not supported when:

¢ The Interpolation method or the Extrapolation
method parameter is Cubic Spline.

or
¢ The Interpolation method parameter is Linear and

the Number of table dimensions parameter is greater
than 5.

Lookup Table Dynamic

Prelookup Not supported when the block outputs an interval fraction
of fixed-point data type.
Sine =
Math Operations Library
Block Support Notes
Abs =
Add —
Algebraic Constraint =
Assignment =
Bias =

Complex to Magnitude-Angle

Not supported

Complex to Real-Imag

Not supported

Divide

Dot Product

Find Nonzero Elements

Gain

Magnitude-Angle to Complex

Not supported
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Block

Support Notes

Math Function

All signal types support the following Function

parameter settings.

conj hermitian

magnitude~2

mod

rem reciprocal

square

transpose

The software does not support the following Function

parameter settings.

10"u exp

hypot

log log10

pow

Matrix Concatenate

MinMax

MinMax Running Resettable

Permute Dimensions

Polynomial

Product

Product of Elements

Real-Imag to Complex

Not supported

Reciprocal Sqrt

Not supported

Reshape

Rounding Function

Sign

Signed Sqrt

Not supported

Sine Wave Function

Not supported

Slider Gain

Sqrt

Not supported
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Block Support Notes

Squeeze =

Subtract —

Sum —

Sum of Elements =

Trigonometric Function Supported when Function is sin, cos, or sincos and
Approximation method is CORDIC.

Unary Minus =

Vector Concatenate —

Weighted Sample Time Math =

Model Verification Library

The software supports all blocks in the Model Verification library.

Model-Wide Utilities Library

Block Support Notes
Block Support Table =

DocBlock =

Model Info =

Timed-Based Linearization Not supported
Trigger-Based Linearization Not supported

Ports & Subsystems Library

Block Support Notes

Atomic Subsystem —

Code Reuse Subsystem =
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Block

Support Notes

Configurable Subsystem

Enable

Enabled Subsystem

Enabled and Triggered Subsystem

Not supported when the trigger control signal specifies a
fixed-point data type.

For Each

Not supported

For Each Subsystem

Not supported

For Iterator Subsystem

Function-Call Feedback Latch

Function-Call Generator

Function-Call Split

Function-Call Subsystem

If Action Subsystem

Inport

Model

Supported except for the limitations described in
“Limitations of Support for Model Blocks” on page 10-36.

Model Variants

Supported except for the limitations described in
“Limitations of Support for Model Blocks” on page 10-36.

Outport

Subsystem

Switch Case

Switch Case Action Subsystem

Trigger

Triggered Subsystem

Not supported when the trigger control signal specifies a
fixed-point data type.

Variant Subsystem

While Iterator Subsystem
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Signal Attributes Library
The software supports all blocks in the Signal Attributes library.

Signal Routing Library

Block

Support Notes

Bus Assignment

Bus Creator

Bus Selector

Data Store Memory

Data Store Read

Data Store Write

Demux

Environment Controller

From

Goto

Goto Tag Visibility

Index Vector

Manual Switch

The Manual Switch block is compatible with the
software, but the analysis ignores this block in a model.

Merge

Multiport Switch

Mux

Selector

Switch

Vector Concatenate
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Sinks Library

Block

Support Notes

Display

Floating Scope

Outport (Outl)

Scope

Stop Simulation

Not supported and not stubbable

Terminator

To File

To Workspace

XY Graph

Sources Library

Block

Support Notes

Band-Limited White Noise

Not supported

Chirp Signal

Not supported

Clock

Constant

Supported unless Constant value is inf.

Counter Free-Running

Counter Limited

Digital Clock

Enumerated Constant

From File

Not supported

From Workspace

Not supported

Ground

Inport (In1)
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Block

Support Notes

Pulse Generator

Ramp

Random Number

Not supported and not stubbable

Repeating Sequence

Not supported

Repeating Sequence Interpolated

Not supported

Repeating Sequence Stair

Signal Builder

Not supported

Signal Generator

Not supported

Sine Wave

Not supported

Step

Uniform Random Number

Not supported and not stubbable

User-Defined Functions Library

Block

Support Notes

Fen

Supports all operators except ~. Supports only the
mathematical functions abs, ceil, fabs, floor, rem,
and sgn.

Interpreted MATLAB Function

Not supported

MATLAB Function

The software analyzes through the MATLAB Function
block.

Level-2 MATLAB S-Function

Not supported

S-Function

Not supported

S-Function Builder

Not supported

Limitations of Support for Model Blocks

The software supports the Model block, but with the following limitations. The
software cannot analyze a model that contains one or more Model blocks if:
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® The referenced model is protected. Protected referenced models are
encoded to obscure their contents. This feature allows third parties to use
the referenced model without being able to view the intellectual property
that makes up the model.

Note For more information, see “Protecting Referenced Models” in the
Simulink documentation.

¢ The parent model or any of the referenced models gives an error when you
set one of the following model parameters in the Configuration Parameters
dialog box to error:

= Diagnostics > Connectivity > Element name mismatch

= Diagnostics > Connectivity > Mux blocks used to create bus
signals

You can use the Element name mismatch diagnostic along with bus
objects so that your model meets the bus element naming requirements
imposed by some blocks.

If your model contains Mux blocks that create bus signals, refer to “Tips” in
“Mux blocks used to create bus signals” to resolve this problem.

® The Model block uses asynchronous function-call inputs.

® Any of the Model blocks in the model reference hierarchy creates an
artificial algebraic loop. If this occurs, take the following steps:

1 On the Diagnostics pane of the Configuration Parameters dialog box,
set the Minimize algebraic loop parameter to error so that Simulink
reports an algebraic loop error.

2 On the Model Referencing Pane of the Configuration Parameters
dialog box, select the Minimize algebraic loop occurrences parameter.

Simulink tries to eliminate the artificial algebraic loop during simulation.
3 Simulate the model.

4 If Simulink cannot eliminate the artificial algebraic loop, highlight the
location of the algebraic loop by selecting Edit > Update Diagram.
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5 Eliminate the artificial algebraic loop so that the software can analyze
the model. Break the loop with Unit Delay blocks so that the execution
order is predictable.

Note For more information, see “Algebraic Loops” in the Simulink
documentation.
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Overview

You can generate C code with the Simulink Fixed Point software by using the
Simulink Coder product. The code generated from fixed-point models uses
only integer types and automatically includes all operations, such as shifts,
needed to account for differences in fixed-point locations. You can use the
generated code on embedded fixed-point processors or on rapid prototyping
systems even if they contain a floating-point processor. For more information
about code generation, refer to the Simulink Coder documentation.

You can generate code for testing on a rapid prototyping system using
products such as xPC Target™, Real-Time Windows Target™, or dSPACE®
software. The target compiler and processor may support floating-point
operations in software or in hardware. In any case, the fixed-point portions of
a model generate pure integer code and do not use floating-point operations.
This allows valid bit-true testing even on a floating-point processor.

You can also generate code for non-real-time testing. For example, you can
generate code to run in nonreal time on computers running any supported
operating system. Even though the processors have floating-point hardware,
the code generated by fixed-point blocks is pure integer code. The Generic
Real-Time Target (GRT) in the Simulink Coder product and acceleration
modes in the Simulink software are examples of where non-real-time code
1s generated and run.
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Code Generation Support

In this section...

“Introduction” on page 11-3
“Languages” on page 11-3

“Data Types” on page 11-3
“Rounding Modes” on page 11-3
“Overflow Handling” on page 11-3
“Blocks” on page 11-4

“Scaling” on page 11-4

Introduction

All fixed-point blocks support code generation, except particular simulation
features. The sections that follow describe the code generation support that
the Simulink Fixed Point software provides.

Languages
C code generation is supported.

Data Types

Fixed-point code generation supports all integer and fixed-point data types
that are supported by simulation. See “Data Type Support” on page 1-20.

Rounding Modes

All rounding modes—Ceiling, Convergent, Floor, Nearest, Round,
Simplest, and Zero —are supported.

Overflow Handling

® Saturation and wrapping are supported.

® Wrapping generates the most efficient code.

11-3



11 Code Generation

114

e Currently, you cannot choose to exclude saturation code automatically
when hardware saturation is available. Select wrapping in order for the
Simulink Coder product to exclude saturation code.

Blocks

All blocks generate code for all operations with a few exceptions. The
Lookup Table Dynamic block generates code for all lookup methods except
Interpolation-Extrapolation.

Scaling
Any binary-point-only scaling and [Slope Bias] scaling that is supported in
simulation is supported, bit-true, in code generation.
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Accelerating Fixed-Point Models

If the model meets the code generation restrictions, you can use Simulink
acceleration modes with your fixed-point model. The acceleration modes can
drastically increase the speed of some fixed-point models. This is especially
true for models that execute a very large number of time steps. The time
overhead to generate code for a fixed-point model is generally larger than the
time overhead to set up a model for simulation. As the number of time steps
increases, the relative importance of this overhead decreases.

Note Rapid Accelerator mode does not support models with bus objects or
33+ bit fixed-point data types as parameters.

Every Simulink model is configured to have a start time and a stop time in
the Configuration Parameters dialog box. Simulink simulations are usually
configured for non-real-time execution, which means that the Simulink
software tries to simulate the behavior from the specified start time to the
stop time as quickly as possible. The time it takes to complete a simulation
consists of two parts: overhead time and core simulation time, which is spent
calculating changes from one time step to the next. For any model, the time
it takes to simulate if the stop time is the same as the start time can be
regarded as the overhead time. If the stop time is increased, the simulation
takes longer. This additional time represents the core simulation time. Using
an acceleration mode to simulate a model has an initially larger overhead
time that is spent generating and compiling code. For any model, if the
simulation stop time is sufficiently close to the start time, then Normal mode
simulation is faster than an acceleration mode. But an acceleration mode
can eliminate the overhead of code generation for subsequent simulations if
structural changes to the model have not occurred.

In Normal mode, the Simulink software runs general code that can handle
various situations. In an acceleration mode, code is generated that is tailored
to the current usage. For fixed-point use, the tailored code is much leaner
than the simulation code and executes much faster. The tailored code allows
an acceleration mode to be much faster in the core simulation time. For any
model, when the stop time is close to the start time, overhead dominates the
overall simulation time. As the stop time is increased, there is a point at
which the core simulation time dominates overall simulation time. Normal
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mode has less overhead compared to an acceleration mode when fresh

code generation is necessary. Acceleration modes are faster in the core
simulation portion. For any model, there is a stop time for which Normal
mode and acceleration mode with fresh code generation have the same overall
simulation time. If the stop time is decreased, then Normal mode is faster. If
the stop time is increased, then an acceleration mode has an increasing speed
advantage. Eventually, the acceleration mode speed advantage is drastic.

Normal mode generally uses more tailored code for floating-point calculations
compared to fixed-point calculations. Normal mode is therefore generally
much faster for floating-point models than for similar fixed-point models.
For acceleration modes, the situation often reverses and fixed point becomes
significantly faster than floating point. As noted above, the fixed-point code
goes from being general to highly tailored and efficient. Depending on the
hardware, the integer-based fixed-point code can gain speed advantages over
similar floating-point code. Many processors can do integer calculations much
faster than similar floating-point operations. In addition, if the data bus is
narrow, there can also be speed advantages to moving around 1-, 2-, or 4-byte
integer signals compared to 4- or 8-byte floating-point signals.

See “Accelerating Models” in Simulink User’s Guide for more information.
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Using External Mode or Rapid Simulation Target

In this section...

“Introduction” on page 11-7
“External Mode” on page 11-7
“Rapid Simulation Target” on page 11-8

Introduction

If you are using the Simulink Coder external mode or rapid simulation
(rsim) target (see Simulink Coder User’s Guide for more information), there
are situations where you might get unexpected errors when tuning block
parameters. These errors can arise when you specify the Best precision
scaling option for blocks that support constant scaling for best precision. See
“Constant Scaling for Best Precision” on page 2-12 for a description of the
constant scaling feature.

The sections that follow provide further details about the errors you might
encounter. To avoid these errors, specify a scaling value instead of using
the Best precision scaling option.

External Mode

If you change a parameter such that the binary point moves during an
external mode simulation or during graphical editing, and you reconnect to
the target, a checksum error occurs and you must rebuild the code. When you
use Best Precision scaling, the binary point is automatically placed based
on the value of a parameter. Each power of two roughly marks the boundary
where a parameter value maps to a different binary point. For example, a
parameter value of 1 to 2 maps to a particular binary point position. If you
change the parameter to a value of 2 to 4, the binary point moves one place to
the right, while if you change the parameter to a value of 0.5 to 1, it moves
one place to the left.

For example, suppose a block has a parameter value of -2. You then build
the code and connect in external mode. While connected, you change the
parameter to -4. If the simulation is stopped and then restarted, this
parameter change causes a binary point change. In external mode, the binary
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point is kept fixed. If you keep the parameter value of -4 and disconnect
from the target, then when you reconnect, a checksum error occurs and you
must rebuild the code.

Rapid Simulation Target

If a parameter change is great enough, and you are using the best precision
mode for constant scaling, then you cannot use the rsim target.

If you change a block parameter by a sufficient amount (approximately a
factor of two), the best precision mode changes the location of the binary
point. Any change in the binary point location requires the code to be rebuilt
because the model checksum is changed. This means that if best precision
parameters are changed over a great enough range, you cannot use the rapid
simulation target and a checksum error message occurs when you initialize
the rsim executable.
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Optimizing Your Generated Code

In this section...

“Introduction” on page 11-9

11-13

Values” on page 11-28

“Handle Net Slope Correction” on page 11-14

“Restrict Data Type Word Lengths” on page 11-10
“Avoid Fixed-Point Scalings with Bias” on page 11-11
“Wrap and Round to Floor or Simplest” on page 11-11
“Limit the Use of Custom Storage Classes” on page 11-13

“Limit the Use of Unevenly Spaced Lookup Tables” on page 11-13

“Minimize the Variety of Similar Fixed-Point Utility Functions” on page

“Optimize Generated Code Using Specified Minimum and Maximum

Introduction

The sections listed in the following table discuss tips to help you to optimize
your code generated from fixed-point blocks, in order to reduce ROM usage or

model execution time:

Tips for Reducing ROM Consumption or Model Execution Time

Reduces
Ti Reduces Model
P ROM Execution
Time
“Restrict Data Type Word Lengths” on page 11-10 Yes Yes
“Avoid Fixed-Point Scalings with Bias” on page 11-11 Yes Yes
“Wrap and Round to Floor or Simplest” on page 11-11 Yes Yes
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Tips for Reducing ROM Consumption or Model Execution Time (Continued)

Reduces
Ti Reduces Model
P ROM Execution
Time
“Limit the Use of Custom Storage Classes” on page 11-13 Yes No
“Limit the Use of Unevenly Spaced Lookup Tables” on page 11-13 | Yes Yes
“Minimize the Variety of Similar Fixed-Point Utility Functions”
Yes No
on page 11-13
Dependent Dependent
on model on model
“Handle Net Slope Correction” on page 11-14 conf1gurat10n, conflguratlon,
compiler, compiler,
and target and target
hardware hardware
“Optimize Generated Code Using Specified Minimum and
. ” Yes Yes
Maximum Values” on page 11-28

11-10

Restrict Data Type Word Lengths

If possible, restrict the fixed-point data type word lengths in your model
so that they are equal to or less than the integer size of your target
microcontroller. This results in fewer mathematical instructions in the
microcontroller, and reduces ROM and execution time.

This recommendation strongly applies to global variables that consume global
RAM. For example, Unit Delay blocks have discrete states that have the
same word lengths as their input and output signals. These discrete states
are global variables that consume global RAM, which is a scarce resource

on many embedded systems.

For temporary variables that only occupy a CPU register or stack location

briefly, the space consumed by a long is less critical. However, depending on
the operation, the use of long variables in math operations can be expensive.
Addition and subtraction of long integers generally requires the same effort

as adding and subtracting regular integers, so that operation is not a concern.
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In contrast, multiplication and division with long integers can require
significantly larger and slower code.

Avoid Fixed-Point Scalings with Bias

Whenever possible, avoid using fixed-point numbers with bias. In certain
cases, if you choose biases carefully, you can avoid significant increases in
ROM and execution time. Refer to “Recommendations for Arithmetic and
Scaling” on page 3-34 for more information on how to choose appropriate
biases in cases where it is necessary; for example if you are interfacing with a
hardware device that has a built-in bias. In general, however, it is safer to
avoid using fixed-point numbers with bias altogether.

Inputs to lookup tables are an important exception to this recommendation. If
a lookup table input and the associated input data use the same bias, then
there is no penalty associated with nonzero bias for that operation.

Wrap and Round to Floor or Simplest

For most fixed-point and integer operations, the Simulink software provides
you with options on how overflows are handled and how calculations are
rounded. Traditional handwritten code, especially for control applications,
almost always uses the “no effort” rounding mode. For example, to reduce the
precision of a variable, that variable is shifted right. For unsigned integers
and two’s complement signed integers, shifting right is equivalent to rounding
to floor. To get results comparable to or better than what you expect from
traditional handwritten code, you should round to floor in most cases.

The primary exception to this rule is the rounding behavior of signed integer
division. The C language leaves this rounding behavior unspecified, but for
most targets the “no effort” mode is round to zero. For unsigned division,
everything is nonnegative, so rounding to floor and rounding to zero are
identical.

You can improve code efficiency by setting the value of the Configuration
Parameters > Hardware Implementation > Embedded Hardware

> Signed integer division rounds to parameter to describe how your
production target handles rounding for signed division. For Product blocks
that are doing only division, setting the Integer rounding mode parameter
to the rounding mode of your production target gives the best results. You
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can also use the Simplest rounding mode on blocks where it is available. For
more information, refer to “Rounding Mode: Simplest” on page 3-13.

The options for overflow handling also have a big impact on the efficiency

of your generated code. Using software to detect overflow situations and
saturate the results requires the code to be much bigger and slower compared
to simply ignoring the overflows. When overflows are ignored for unsigned
integers and two’s complement signed integers, the results usually wrap
around modulo 2N, where N is the number of bits. Unhandled overflows that
wrap around are highly undesirable for many situations.

However, because of code size and speed needs, traditional handwritten code
contains very little software saturation. Typically, the fixed-point scaling is
very carefully set so that overflow does not occur in most calculations. The
code for these calculations safely ignores overflow. To get results comparable
to or better than what you would expect from traditional handwritten code,
the Saturate on integer overflow parameter should not be selected for
Simulink blocks doing those calculations.

In a design, there might be a few places where overflow can occur and
saturation protection is needed. Traditional handwritten code includes
software saturation for these few places where it is needed. To get comparable
generated code, the Saturate on integer overflow parameter should only
be selected for the few Simulink blocks that correspond to these at-risk
calculations.

A secondary benefit of using the most efficient options for overflow handling
and rounding is that calculations often reduce from multiple statements
requiring several lines of C code to small expressions that can be folded into
downstream calculations. Expression folding is a code optimization technique
that produces benefits such as minimizing the need to store intermediate
computations in temporary buffers or variables. This can reduce stack size
and make 1t more likely that calculations can be efficiently handled using only
CPU registers. An automatic code generator can carefully apply expression
folding across parts of a model and often see optimizations that might not be
obvious. Automatic optimizations of this type often allow generated code to
exceed the efficiency of typical examples of handwritten code.
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Limit the Use of Custom Storage Classes

In addition to the tip mentioned in “Wrap and Round to Floor or Simplest”
on page 11-11, to obtain the maximum benefits of expression folding you
also need to make sure that the Storage class field in the Signal Properties
dialog box is set to Auto for each signal. When you choose a setting other
than Auto, you need to name the signal, and a separate statement is created
in the generated code. Therefore, only use a setting other than Auto when
it is necessary for global variables.

You can access the Signal Properties dialog box by selecting any connection
between blocks in your model, and then selecting Signal Properties from
the Simulink Edit menu.

Limit the Use of Unevenly Spaced Lookup Tables

If possible, use lookup tables with nontunable, evenly spaced axes. A table
with an unevenly spaced axis requires a search routine and memory for each
input axis, which increases ROM and execution time. However, keep in mind
that an unevenly spaced lookup table might provide greater accuracy. You
need to consider the needs of your algorithm to determine whether you can
forgo some accuracy with an evenly spaced table in order to reduce ROM and
execution time. Also note that this decision applies only to lookup tables with
nontunable input axes, because tables with tunable input axes always have
the potential to be unevenly spaced.

Minimize the Variety of Similar Fixed-Point Utility
Functions

The Embedded Coder product generates fixed-point utility functions that are
designed to handle specific situations efficiently. The Simulink Coder product
can generate multiple versions of these optimized utility functions depending
on what a specific model requires. For example, the division of long integers
can, in theory, require eight varieties that are combinations of the output
and the two inputs being signed or unsigned. A model that uses all these
combinations can generate utility functions for all these combinations.

In some cases, it is possible to make small adjustments to a model that reduce

the variety of required utility functions. For example, suppose that across
most of a model signed data types are used, but in a small part of a model, a
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local decision to use unsigned data types is made. If it is possible to switch
that portion of the model to use signed data types, then the overall variety of
generated utility functions can potentially be reduced.

The best way to identify these opportunities is to inspect the generated code.
For each utility function that appears in the generated code, you can search
for all the call sites. If relatively few calls to the function are made, then trace
back from the call site to the Simulink model. By modifying those places in
the Simulink model, it is possible for you to eliminate the few cases that
need a rarely used utility function.

Handle Net Slope Correction

The Simulink Fixed Point software provides an optimization parameter, Use
integer division to handle net slopes that are reciprocals of integers,
that controls how the software handles net slope correction. To learn how to
enable this optimization, see “How to Use Integer Division to Handle Net
Slope Correction” on page 11-15.

When a change of fixed-point slope is not a power of two, net slope correction
is necessary. Normally, net slope correction is implemented using an integer
multiplication followed by shifts. Under some conditions, an alternate
implementation requires just an integer division by a constant. One of the
conditions is that the net slope can be accurately represented as the reciprocal
of an integer. Under this condition, the division implementation gives more
accurate numerical behavior. Depending on your compiler and embedded
hardware, the division implementation might be more desirable than the
multiplication and shifts implementation. The generated code for the division
implementation might require less ROM or improve model execution time.

When to Use Integer Division to Handle Net Slope Correction
This optimization works if:

¢ The net slope is a reciprocal of an integer.

¢ Division is more efficient than multiplication followed by shifts on the
target hardware.
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Note The Simulink Fixed Point software is not aware of the target
hardware. Before selecting this option, verify that division is more efficient
than multiplication followed by shifts on your target hardware.

When Not to Use Integer Division to Handle Net Slope
Correction

This optimization does not work if:

The software cannot perform the division using the production target long
data type and therefore must use multiword operations.

Using multiword division does not produce code suitable for embedded
targets. Therefore, do not use integer division to handle net slope correction
in models that use multiword operations. If your model contains blocks
that use multiword operations, change the word length of these blocks

to avoid these operations.

Net slope is a power of 2

Binary-point-only scaling, where the net slope is a power of 2, involves
moving the binary point within the fixed-point word. This scaling mode
already minimizes the number of processor arithmetic operations.

How to Use Integer Division to Handle Net Slope Correction
To enable this optimization:

Select the Optimization > Use integer division to handle net slopes
that are reciprocals of integers configuration parameter.

For more information, see “Use integer division to handle net slopes that
are reciprocals of integers” in the Simulink Graphical User Interface.

On the Hardware Implementation > Embedded Hardware pane, set
the Signed integer division rounds to configuration parameter to Floor
or Zero, as appropriate for your target hardware. The optimization does not
occur if the Signed integer division rounds to parameter is Undefined.
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Note You must set this parameter to a value that is appropriate for the
target hardware. Failure to do so might result in division operations that
comply with the definition on the Hardware Implementation pane, but
are inappropriate for the target hardware.

3 Set the Integer rounding mode of the blocks that require net slope
correction (for example, Product, Gain, and Data Type Conversion) to
Simplest or match the rounding mode of your target hardware.

Note You can use the Model Advisor to alert you if you have not configured
your model correctly for this optimization. Open the Model Advisor and
run the Identify questionable fixed-point operations check. For more
information, see “Optimize Net Slope Correction” on page 11-44.

Example: Improving Numerical Accuracy of Simulation Results

This example illustrates how selecting the Use integer division to handle
net slopes that are reciprocals of integers optimization parameter
improves numerical accuracy. It uses the following model.
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Because there is no bias for the inputs or outputs:

SaQa = Sbe'Sch , Or

Sbc

% ="g

Qb Qc

a
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where the net slope is:

SbSc

S,

a

The net slope for the Product block is 1/1000. Because the net slope is the
reciprocal of an integer, you can use the Use integer division to handle
net slopes that are reciprocals of integers optimization parameter if your
model and hardware configuration are suitable. For more information, see
“When to Use Integer Division to Handle Net Slope Correction” on page 11-14.

To set up the model and run the simulation:

1 For the two Constant blocks, set the Output data type to fixdt (1, 16,
1/1000, 0).

2 For the Product block, set the Output data type to fixdt(1, 16,
1/1000, 0). Set the Integer rounding mode to Simplest.

3 Set the Hardware Implementation > Embedded Hardware >
Signed integer division rounds to configuration parameter to Zero.

4 Clear the Optimization > Use integer division to handle net slopes
that are reciprocals of integers configuration parameter.

5 In your Simulink model window, select Simulation > Start.
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Because the simulation uses multiplication followed by shifts to handle
the net slope correction, net slope precision loss occurs. This precision
loss results in numerical inaccuracy: the calculated product is 3.999, not

4, as you expect.

Note You can set up the Simulink Fixed Point software to provide alerts
when precision loss occurs in fixed-point constants. For more information,
see “Net Slope and Net Bias Precision” on page 3-22.

6 Select the Optimization > Use integer division to handle net slopes
that are reciprocals of integers configuration parameter, save your
model, and simulate again.
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The software implements the net slope correction using division instead of
multiplication followed by shifts. The calculated product is 4, as you expect.

=10 x|
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The optimization works for this model because:
® The net slope is a reciprocal of an integer.

¢ The Hardware Implementation > Embedded Hardware > Signed
integer division rounds to configuration parameter is set to Zero.

Note This setting must match your target hardware rounding mode.
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¢ The Integer rounding mode of the Product block in the model is set
to Simplest.

® The model does not use multiword operations.

Example: Improving Efficiency of Generated Code

This example illustrates how selecting the Use integer division to handle
net slope correction optimization parameter improves the efficiency of
generated code.

Note The generated code is more efficient only if division is more efficient
than multiplication followed by shifts on your target hardware.

This example uses the following model.
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For the Product block in this model,
V,=VyxV,

These values are represented by the general [Slope Bias] encoding scheme

described in “Scaling” on page 2-5:V; = S;@Q; + B, .

Because there is no bias for the inputs or outputs:
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SaQa = Sbe‘Sch , Or

S, S
Qa: g C'Qch
a

where the net slope is:

SbSc

S

a

The net slope for the Product block is 1/1000.

Similarly, for the Data Type Conversion block in this model,
SaQa + Ba = Sbe +Bb
Sp

There is no bias. Therefore, the net slope is S, . The net slope for this block
is also 1/1000.

Because the net slope is the reciprocal of an integer, you can use the Use
integer division to handle net slopes that are reciprocals of integers
optimization parameter if your model and hardware configuration are
suitable. For more information, see “When to Use Integer Division to Handle
Net Slope Correction” on page 11-14.

To set up the model and generate code:

1 For the two Inport blocks, U and V, set the Data type to int16.

2 For the Data Type Conversion block, set the Integer rounding mode to
Simplest. Set the Output data type to fixdt(1, 16, 1000, 0).

3 For the Product block, set the Integer rounding mode to Simplest. Set
the Output data type to fixdt(1, 16, 1000, 0).

4 Set the Hardware Implementation > Embedded Hardware >
Signed integer division rounds to configuration parameter to Zero.

5 Clear the Optimization > Use integer division to handle net slopes
that are recipr